MIC-based therapies

W. Peetermans Department of Internal Medicine University Hospital Leuven

> BVIKM/SBIMC-VIZ-NVMM Antwerp, November 8th, 2002.

MIC-based therapies

- Arguments pro
 - PK-PD principles of treatment
 - clinical practice guidelines (Belgium)
 - CAP
 - meningitis
 - other clinical indications
- Arguments contra
 - conceptual weaknesses
 - feasibility issues
- Conclusions

PK-PD principles of treatment

- Parameter of efficacy
 - max bactericidal effect in vitro / in vivo
 - bacteriological eradication
 - clinical cure
- Prevention of resistance
 - bacteriological persistence
 - mutation prevention concentration in vitro

PK-PD principles of treatment

• Time above MIC:

- Peak / MIC:
- AUC_{24h}/MIC:

beta-lactams macrolides oxazolidinones aminoglycosides fluoroquinolones fluoroquinolones azithromycin and ketolides glycopeptides streptogramins

Antibiotic resistance (%) of Streptococcus pneumoniae (Belgium)

	2000	2001	2000-2001
	invasive	invasive	mixed
	(n=1216)	(n=1427)	(n=341)
penicillin G	17.6	15.0	21.0
I + R	11.6 + 6.0	14.8 + 0.2	10.8 + 10.2
cefotaxime	5.7	0.5	7.3
erythromycin	36.5	36.6	30.3
tetracycline	31.7	30.2	38.5
ofloxacin / ciprofloxacin	0.3	0.1	11.2

J. Verhaegen. National Reference Laboratory. R. Vanhoof, et al. ECCMID 2002.

Evolution of S. *pneumoniae* **resistance in Belgium**

Referentielabo pneumokokken, Leuven

Optimizing dosage for beta-lactams

oral amoxicillin (MIC = 1 mg/l)

Amoxicillin dosage and resistance

susceptibility of *S. pneumoniae* to amoxicillin in Belgium

MIC data: J. Verhaegen et al., 2001.

Amoxicillin dosage and resistance

MIC data: J. Verhaegen et al., 2001.

PK-PD levofloxacin and S. pneumoniae in Belgium

PK-PD levofloxacin and S. pneumoniae in Belgium

PK-PD moxifloxacin and S. pneumoniae in Belgium

Interpretive criteria for susceptibility testing (MIC:mg/L)

	Susceptible	Intermediate	Resistant
N. meningitidis ⁽¹⁾			
penicillin	≤ 0.06	0.12-1	≥2
cefotax / ceftriax	≤ 0.25	0.5-1	≥2
S. pneumoniae (2)			
penicillin	≤ 0.06	0.12-1	≥2
cefotax / ceftriax			
non-meningitis	≤ 1	2	≥ 4
meningitis	≤ 0.5	1	≥2

(1): IDAB 2000. AAC 1992; 36: 1028.(2): NCCLS 2002.

N. meningitidis: susceptibility data Belgium 1998 (n = 220)

	MIC ₉₀	susceptible	
	(mg/L)	(%)	
penicillin G	0.032	97.7*	
rifampin	0.125	100	
ciprofloxacin	0.004	100	

* 5 strains with MIC > 0.064 mg/L; highest MIC 0.25 mg/L (intermediate)

S. pneumoniae cerebrospinal fluid isolates Belgium 1997-2000 (n=237)

	Intermediate	Resistant
	(%)	(%)
penicillin G	11.8	2.1
cefotaxime	4.6	0.4
meropenem	1.3	0.0
vancomycin	0.0	0.0
levofloxacin	0.0	0.4

ICAAC 2001. Acta Clin Belg (in press).

S. pneumoniae cerebrospinal fluid isolates Belgium 1997-2000 (n = 237)

- highest MIC for penicillin : 2 mg/L (5 strains)
- highest MIC for cefotaxime : 2 mg/L (1 strain)
- highest MIC for meropenem : 0.5 mg/L (3 strains)
- highest MIC for levofloxacin : 12 mg/L (1 strain) (MIC for moxifloxacin: 1 mg/L)

Acta Clin Belg (in press).

Pharmacokinetics in bacterial meningitis

- CSF / serum concentration values are highly variable
- peak levels in serum and CSF do not coincide
- concentration-time curves in serum and CSF do not run parallel
- elimination half-life is increased in CSF

Infect Dis Clin North Am 1999; 13: 595.

Pharmacodynamics of beta-lactam antibiotics in bacterial meningitis

- CSF levels must exceed MIC by 10-30 fold to obtain maximal bactericidal activity in experimental animal models
- Time > MIC is the only parameter that independently correlates with bacterial killing in experimental pneumococcal meningitis
- Time > MIC needs to be 75-100 % to obtain maximal killing (sterilization at 24 hours)
- Time > MIC of 50 % results in 50 % of the maximal killing rate (sterilization at 72 hours)

Infect Dis Clin North Am 1999; 13: 595.

Clinical relevance of antibiotic resistance in bacterial meningitis

N. meningitidis

 intermediate resistance not associated with clinical failure if treatment with high dose of penicillin

S. pneumoniae

- treatment failure and death reported due to penicillin intermediate and resistant pneumococci, treated with penicillin G
- clinical and bacteriological failures reported when using cefotaxime or ceftriaxone for cephalosporin intermediate or resistant PRSP

Clin Microbiol Rev 1998; 11: 628.

Clinical practice guideline for bacterial meningitis (Belgium)

- always perform MIC testing on CSF isolates
- since pneumococcal resistance to 3rd generation cephalosporins remains rare and low level, addition of vancomycin to the empirical therapy not (yet) necessary
- concern about penetration BBB when using adjuvant dexamethasone in case of less susceptible pneumococci

Acta Clin Belg 2001; 56: 225. IDAB symposium, September 2002.

MIC-based therapies: Infective Endocarditis

• viridans streptococci or S. bovis penicillin MIC \leq 0.1 mg/L penicillin MIC > 0.1 mg/L but \leq 0.5 mg/L penicillin MIC > 0.5 mg/L

• enterococci:

low or high level resistance to gentamicin

AHA guidelines. JAMA 1995; 274: 1706 / Circulation 1998; 98: 2936.

MIC-based therapies: other indications

- viridans streptococci bacteremia in neutropenic patients: (penicillin; 3rd gen cephalosporins)
- glycopeptide-resistant enterococci bacteremia: (ampicillin; vancomycin; teicoplanin; linezolid)
- Pseudomonas or enterobacteriaceae CSF infection (postoperative):(3rd gen cephalosporins; ceftazidime; cefepime; meropenem)

IDAB Guide to Extended Antimicrobial Susceptibility Testing 2000.

MIC-based therapies: Conceptual weaknesses (1)

MIC is artificial in vitro test

- standard bacterial concentration
- stable antibiotic concentration
- incubation time / temperature / environment
- PK variability among individual patients
 - absorption / distribution volumes in sepsis patients
 - drug-drug interactions
 - fixed dose irrespective of body weight and gender
 - dose reduction according to renal function starts at GFR < 50 ml/min.

MIC-based therapies: Conceptual weaknesses (2)

- PK data
 - derived from studies in healthy adults; not measured in individual patients
 - total or free serumconcentration
 - serumconcentration or concentration at infection site (CSF / ELF / ...)
- MIC data
 - susceptibility testing on one CFU only
 - different breakpoints in US/UK/NL/FR/GER/SP...

MIC-based therapies: Conceptual weaknesses (3)

PK-PD characteristics

- modelling based upon MIC₉₀ and mean serumconcentrations
- relevance of mutation prevention concentration not established

(Craig. CID 2001; 33 (suppl 3): S233)

 PK-PD magnitudes to reduce risk of FQ resistance in pneumococci not established

(Craig. CID 2001; 33 (suppl 3): S233)

MIC-based therapies: Conceptual weaknesses (4)

PK-PD characteristics

- environmental conditions at site of infection may influence both PK and PD
- sum of AUIC values predictive of killing rates in patients with antibiotics in combination; or

(Shentag. CID 1998; 27: 40)

type-specific PK-PD indices explain most of the variation for antibiotic combination and summing AUIC is poor predictor of antibacterial activity (Mouton. AAC 1999; 43: 2473)

 optimal dosing schemes based upon PK-PD limited by toxicity and feasibility issues

MIC-based therapies: Feasibility issues

- MIC on all "relevant" isolates
 - work load
 - cost
- No relevant isolate (negative culture results)
- Multiple relevant isolates (mixed infections)
- No measurement of individual PK-data

MIC-based therapies: Conclusions

• PK-PD characteristics are a useful tool

- to provide an explanation for clinical observations
- to establish more effective dosing regimens
- to establish breakpoints
- to propose dosing regimens for clinical trials with new antibiotics
- to design studies with new treatment modalities

MIC-based therapies: Conclusions

PK-PD modelling

- cannot replace clinical trials (efficacy; toxicity)
- cannot replace clinical experience
- does not consider other factors involved in clinical failure or cure
- does not consider other factors involved in emergence of antibiotic resistance

MIC-based therapies: Conclusions

MIC-based therapies for individual patients
not for routine daily practice

- reserved for specific indications
 - severe and difficult-to-treat infections
 - empirical regimens
 - directed therapy
 - specific drug-microbe combinations
 - directed therapy