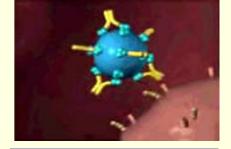
CHU – Liège (Belgium) Medical Microbiology

Dr P. HUYNEN

SEROLOGICAL DIAGNOSIS IN 2006 AND FUTURE PROSPECTS



Introduction

From specimen collection to result

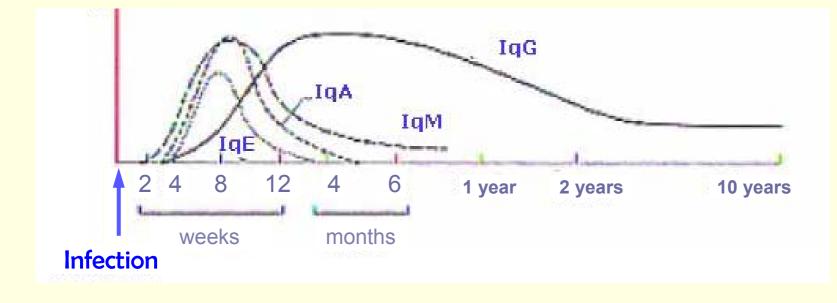
- > Pre- analytic
- Analytic
- Post- analytic: CMV
 - Influenza Virus
 - Lyme disease
- Future prospects
- Conclusion

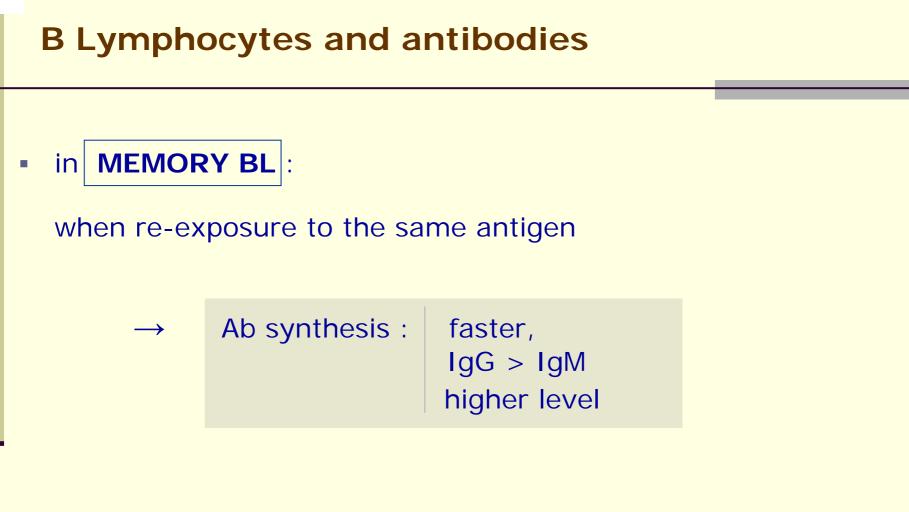
Infectious Serology : definition

= detection, in the serum or CSF,

of antibodies produced during the humoral

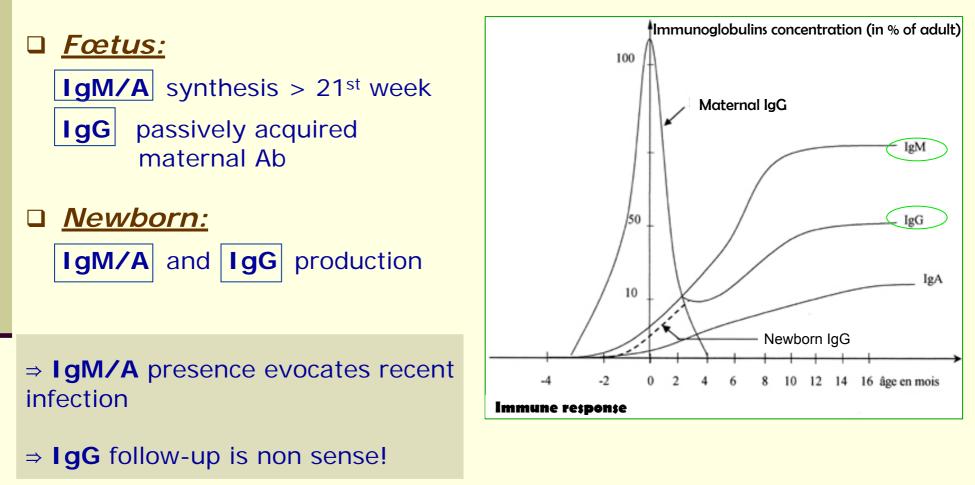
immune response,


before, during or after the infection


B Lymphocytes and antibodies

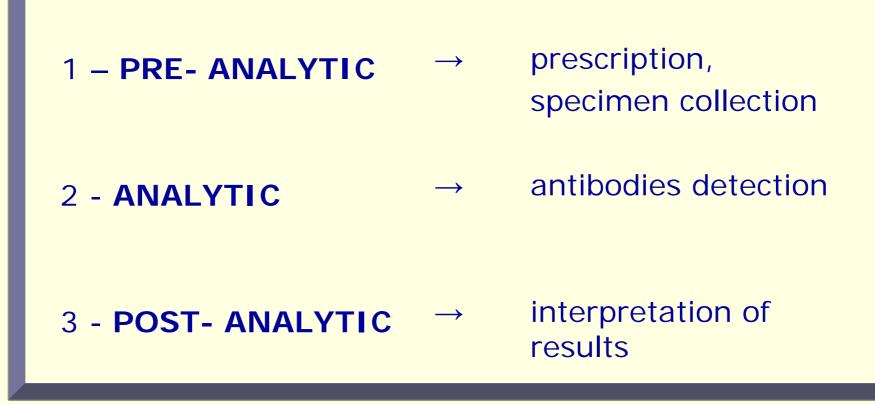
BL differentiation:

• in **PLASMOCYTE** : IgA and IgM production, afterwards IgG.



Different types of antibodies

Billerent types of antibodies	early	
	detection time	% pool
IgA ⇒ local and general immunity	4-10 days	15%
IgM + sites ⇒ + cross-reactions	4-10 days	10%
IgG Stimulate phagocytosis, activate C' immunity Only Ig to go through placenta!	2-3 weeks	75%
IgD, IgE	few days	<1%



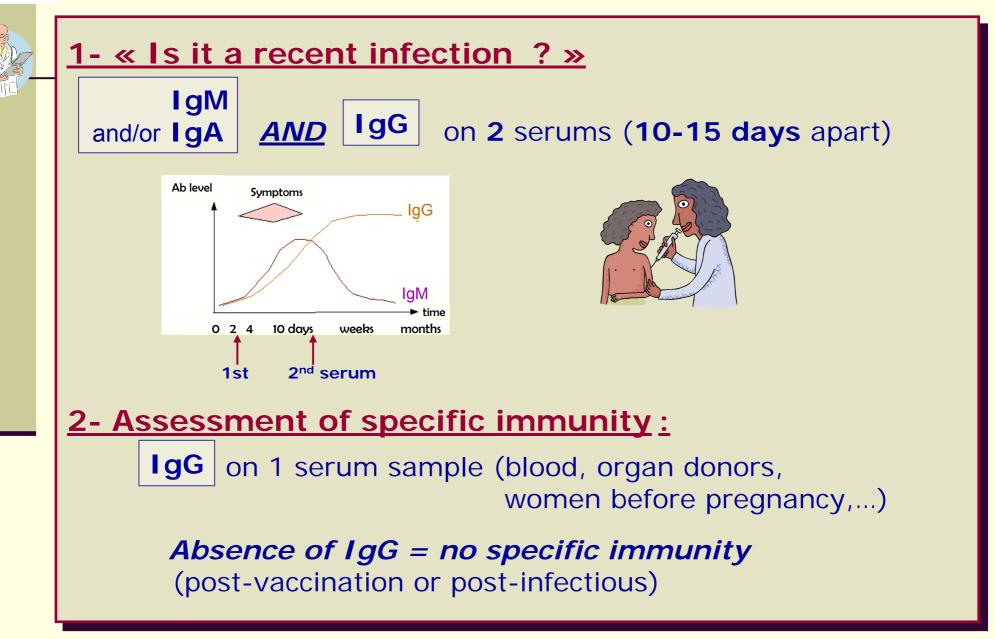
In fœtus and newborn

From specimen collection to result

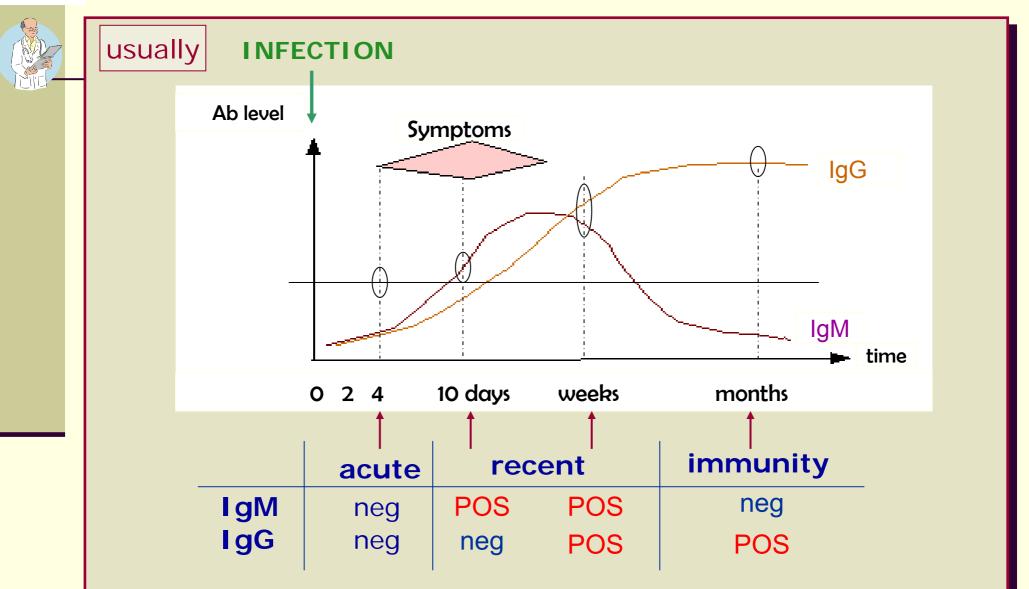
PRE-ANALYTIC: Prescription

CLINICIAN

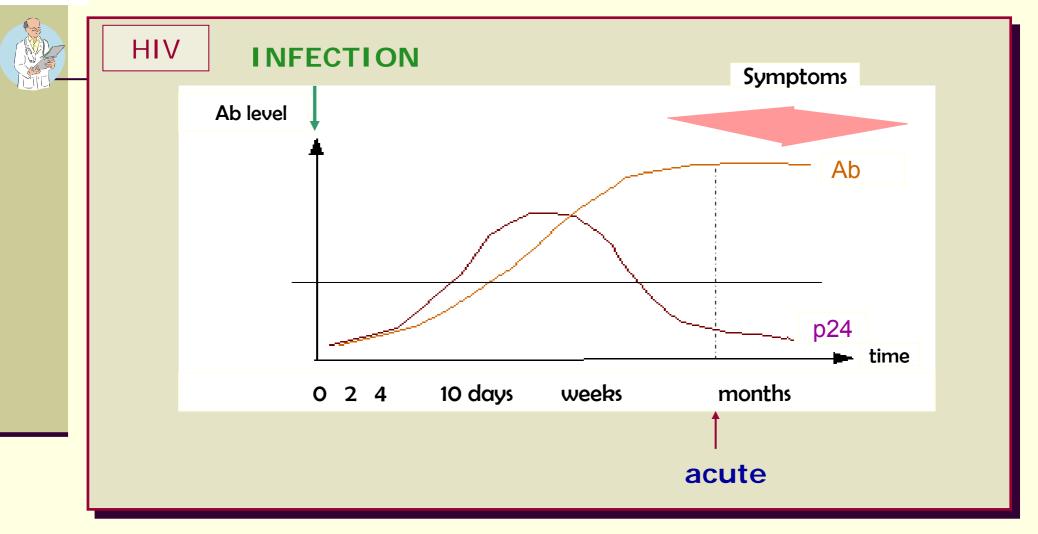
choice analysis should be based upon clinical and anamnestical informations


BUT usually, clinician subjectivity influences this choice!

□ request form:


- name,...

- HATANIC COLORADO
- clinical informations help the biologist:
 - ✓ to adjust prescription
 - ✓ to choose a rapid diagnosis test
 - ✓ to interpret results



Indications of serological analysis

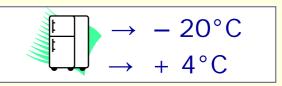
- ✓ Etiologic diagnosis of infectious disease
- Infectious monitoring in immunodeficient patients
- ✓ Follow-up of chronic infections (Hepatitis,...)
- ✓ Screening and follow-up of pregnant women
- ✓ Therapeutic follow-up (Syphilis)
- ✓ Risk assessment in Healthcare workers injuries (HIV, HCV)
- Evaluation of immunisation efficiency
- Epidemiologic survey

PRE-ANALYTIC: specimen

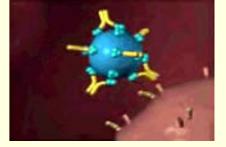
PRE-ANALYTIC: specimen

CLINICIAN

- *serum*: dry test tube (+/- gel), WITHOUT anti-coagulant
- CSF: <u>dry</u> test tube
- Quality A haemolysis!
- Volume
- Labels, leak proof bag


TRANSPORT

Time to transfer to the lab (<48h)


LABORATORY

- Centrifugation within 48h after collection
- Storage of specimens:
 - long conservation
 - rapid analysis (< 1 week)

ANALYTIC

Methods:

1- Screening

- Immuno– assay (enzymology, fluorescence)
- Agglutination (i.e. RPR)
- Inhibition of hemagglutination (i.e. Influenza)
- Complement Fixation (i.e. CMV, Poliovirus)

2- Confirmation methods

- PCR (i.e. HIV, HCV)
- Western- blot (i.e. Borrelia)

sensitivity and specificity # :

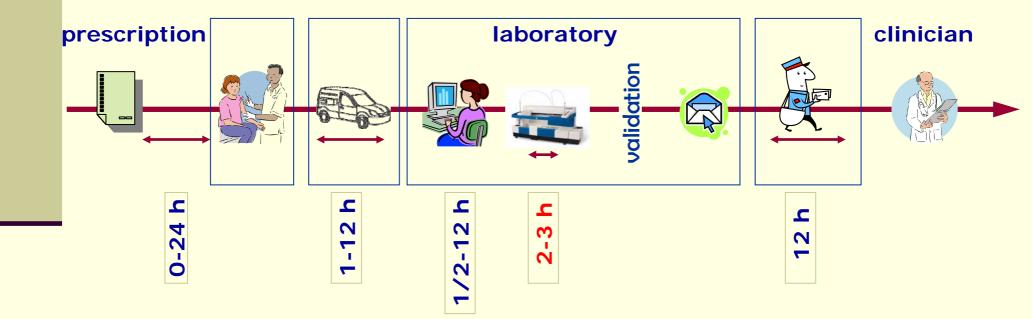
ANALYTIC

Methods

Interferences in dosage:

- Cross reactions (IgM >> IgG)
 - Rhumatoïd Factor
 - Other Ab
 - Heterophile Ab
 - Reagent is never « pure »
 - \rightarrow false– positives
- Saturation: high quantity of Ig (i.e. IHA, CF)

 \Rightarrow saturation \rightarrow **false- negatives**


Pregnancy: Frequent polyclonal activations and reactivations

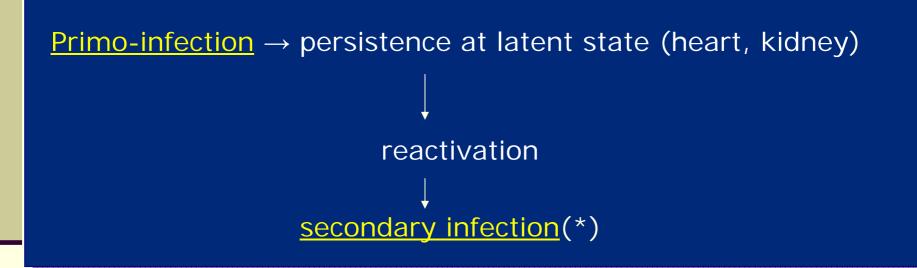
Expected turn-around time: CHU example

POST-ANALYTIC

= interpretation of the results

Illustrations:

- CMV
- Influenza virus
- Lyme disease



CMV INFECTIONS

Pathogenicity

(*) Usually asymptomatic in immunocompetent patients

Clinical manifestations

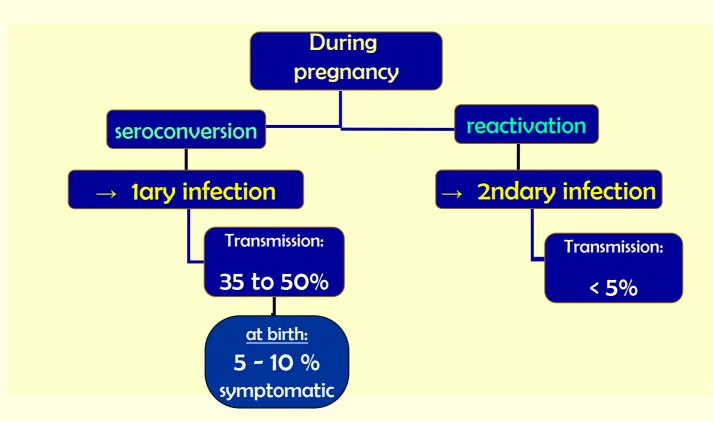
I. Primo-infection in immunocompetent patient

 \rightarrow asymptomatic *OR* mononucleosis like syndrome

II. Primo-infection in immunocompromised patient

 \rightarrow symptomatic

Cellular immunodepression => frequent **reactivations**

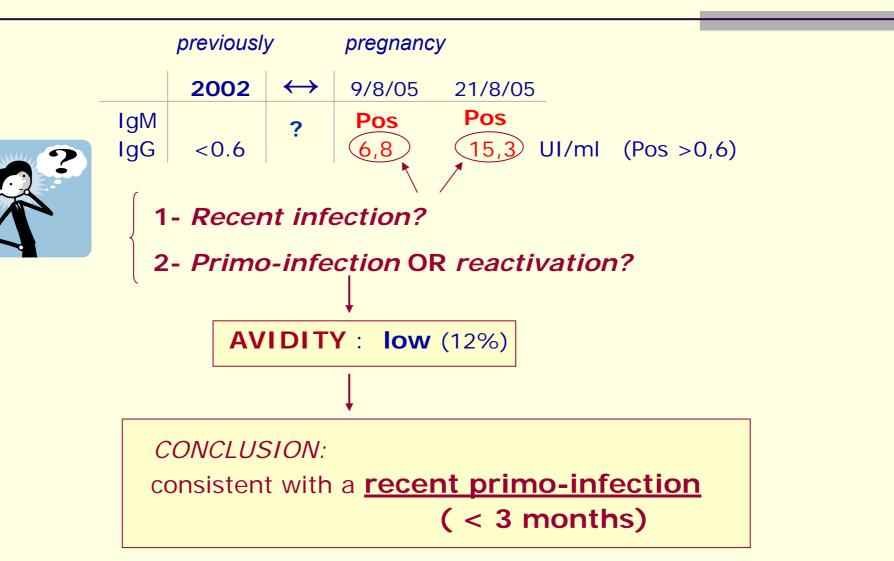


Clinical manifestations

III. Materno – fœtal transmission


CMV = 1st european cause of congenital infection.

CONSEQUENCES: related to maternal immunologic status


CMV serology: interpretation

<u>Case 3</u>

\bigcirc 24 years, early pregnancy

IgG Avidity

Principle:recent infection⇒ weaklink Ag-Abold infection⇒ stablelink Ag-Ab

 \rightarrow Dosage of **IgG** with and without **urea**:

if link is weak \Rightarrow urea will break the link

Indication: to determine the time of infection when *presence of IgM* and *IgG* in pregnant woman whom previous serological status is unknown

Interpretation:

HIGH avidity \rightarrow consistent with an OLD primo-infection (> 3 months) LOW avidity \rightarrow consistent with a RECENT primo-infection (< 3 months)

<u>Case 4</u>

♀ 25 years, pregnant (13 weeks), none previous serology

	5/06/04	19/06/04	1
IgM	Pos	Pos	
IgG	13,2	14,1	UI/ml (Pos >0,6)

1- Recent infection?

<u>non</u> significant ↑ IgG → persistent IgM after an acute episode (WHEN?) <u>or</u> non specific IgM

2- <u>1^{ry} or 2^{ndary} infection?</u>

impossible to know without prior results!

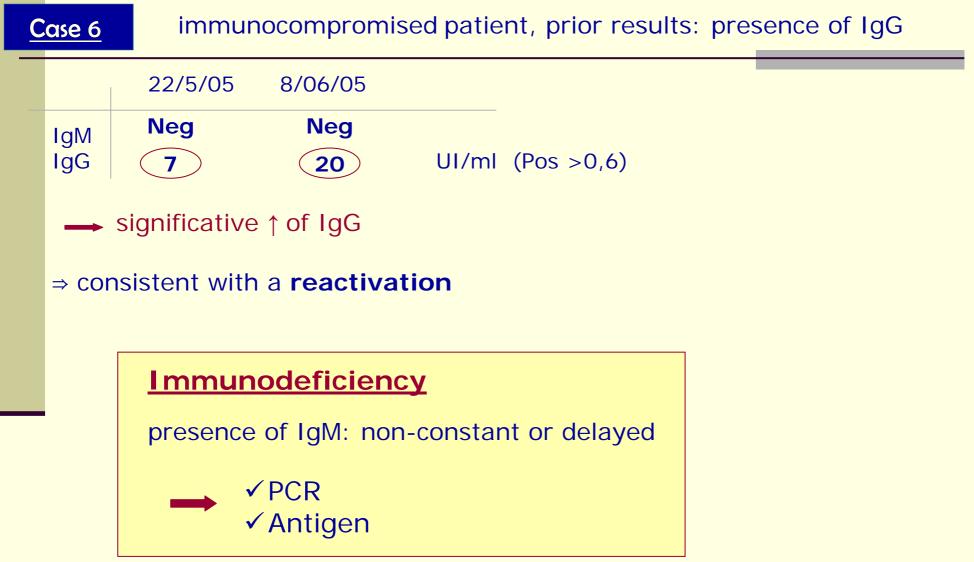
AVIDITY : high (74%)

CONCLUSION: results consistent with an **old primo-infection**

<u>Case 5</u>

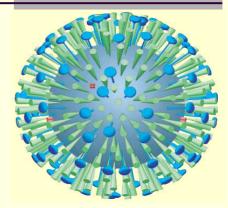
♀ 31 ans, pregnant (19 weeks)

	previously	pregnancy			
	25/11/03	2/10/05	18/10/05		
IgM	Neg	Pos	Pos		
IgG	3,9	9.5	19.5 UI/ml	(Pos >0,6)	


1- Recent infection?

2- <u>1^{ry} or 2^{ndary} infection?</u>

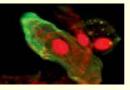
⇒ viral reactivation



IMPORTANT!

- 1- To compare 2 levels of IgG:
 - advised to test PAIRED SERUMS in parallel
 - at least performed in the SAME LABORATORY,
- 2- To determine the time of an infection:
 - impossible from results obtained from <u>ONE SERUM ONLY</u>!
 - need for ≥ 2 serums (2-3 weeks apart)
- 3- To respect **TIME** between the 2 serums.
- 4- To never interpret definitively a doubtful serology before obtaining a CONTROL 2 to 4 weeks after the first specimen!

INFLUENZA VIRUS


phase

acute

Laboratory diagnosis: acute phase

□ Antigenic detection of Influenza virus in a nasopharyngeal specimen

Immunoflorescence

Epithelial cells infected by Infuenza A.

Rapid immuno- assays

(Immunocards, strips,...)

PCR, isolation of the virus: essential to study antigenic variability

etrospective

Methods

Laboratory diagnosis: retrospective

Detection of antibodies:

<u>1st serum:</u> in the acute phase <u>2nd serum:</u> 10 to 15 days later

• ELISA:

IgA Pos (or IgM)and/orIgG Pos (with apparition or significant ↑ between 2 serums)

<u>CF, Inhibition of hemagglutination :</u>

high titer OR x4 between 2 serums in CF

! Cross reactions between IgA (or IgM) Influenza A et B

⇒ consistent with an acute infection

Inhibition of hemagglutination reaction (IHA):

 \rightarrow detection of **specific Ab** against the hemagglutinin of Influenza virus (virulence factor)

(HA: agglutinates red cells)

⇒ allows serotyping

Influenza outbreak in a Belgian nursing home (march '05)

Flu symptomatology in 30 vaccinated patients

<u>1st sample collection</u>: performed 15 d. after the beginning of the outbreak <u>2nd sample collection</u>: performed 2-3 weeks later

Mrs F 31/3 N Mrs F 18/4 N	Neg :	IgG >200	IgA Pos	IgG 115	<u>NY</u> 480	NC 30	
Mrs F 18/4	0			115	480	30	20
	VS 2	1227	D			50	30
			Pos		1280	40	40
Mrs T ?/3	Neg	74	Neg	85	20	20	20
Mrs T 31/3	Veg	346	Neg	129	160	10	5
Mrs P ?/3 N	4	193	Neg	74			
Mrs P 16/4 N	5	555			1280	20	20

LYME DISEASE

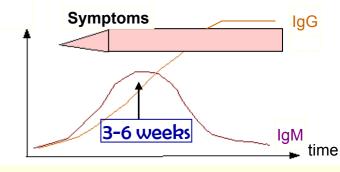
Lyme disease

Reminder

Spirochete: Borrelia burgdorferi

<u>Vector:</u> tick

Most important species:



Region

Europe and parts of Asia North America and Europe Parts of Asia and Europe

Lyme disease

Serological diagnosis

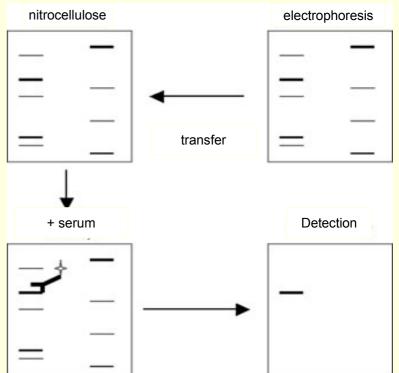
The usual laboratory diagnosis is based on the SEROLOGICAL ANALYSIS.

	Ant	ibiotics				
	10/8/05	5/9/05	22/9/05	20/10/05		
IgM	Pos	Pos	Neg	Neg		
IgG	181.8	158,5	159	73	UI/ml	(Pos > 15)

Skin biopsy : PCR **Pos**

Case 1

⇒ Western-blot

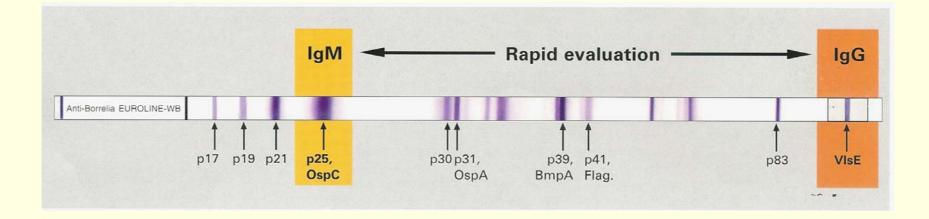


Confirmation test: Western-blot

Principle: detection of Ab against different specific Ag of the microorganism, after having separated them by electrophoresis.

□ High specificity (> ELISA)

<u>Recommended use:</u>
 confirmation of a serological diagnosis
 (Borrelia, HCV, HIV)

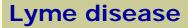


Borrelia burgdorferi

Surface proteins:

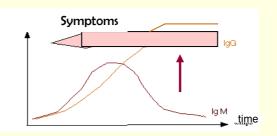
Osp A, B, C (early infection), D; VIsE

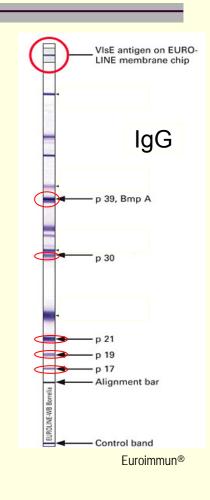
(VIsE: Variable major protein-like sequence expresse)



Case 2	♀ 48 ye	ars, arthralgies left knee , atyp	pical erythem left leg
			IgM
	7/6/05	28/6/05	• p 25, Osp C
IgM IgG	Pos 25	Pos 85 UI/ml (Pos > 15)	7/6/05 28/6/05 VISE antigen on EURO- LINE membrane chip
			lgG
W.B. IgM W.B. IgG	Pos (OspC) Pos (2 ban		p 39, Bmp A
Recen	t infection		p 21 p 19 Alignment bar
(ph	ase 2)	P.HUYNEN	eijaurog BAK-SWUTOUNITS

Euroimmun®




Case 3	♂ 12 years (Ardennes), atypical erythem (right leg),
Juse 5	facial paralysis

	serum	21/8/06	31/8/06	
	IgM	Neg	Neg	
	IgG	165	164	UI/ml (Pos > 15
W	.B. IgM	Neg		
W	.B. IgG	Pos (Vise	, p39, p30,	p21, p19, p17)
	CSF			
	IgG	69 UA/n	nl (Pos	> 5.5)
		(Index	CSF/serum: 4	4.5)
	PCR	Neg		

⇒ <u>Skin Biopsy</u>: PCR: **Positive**

Case 4

♂ 23 years, tick bite, asymptomatic

	9/8/05	2/9/05
IgM	Pos	Pos
IgG	< 10	<10 UI/ml
W.B IgM	Neg	Neg
W.B. IgG	Neg	Neg

→ Treated infection or Non specific IgM

Future prospects

Evolution of serological dosage techniques

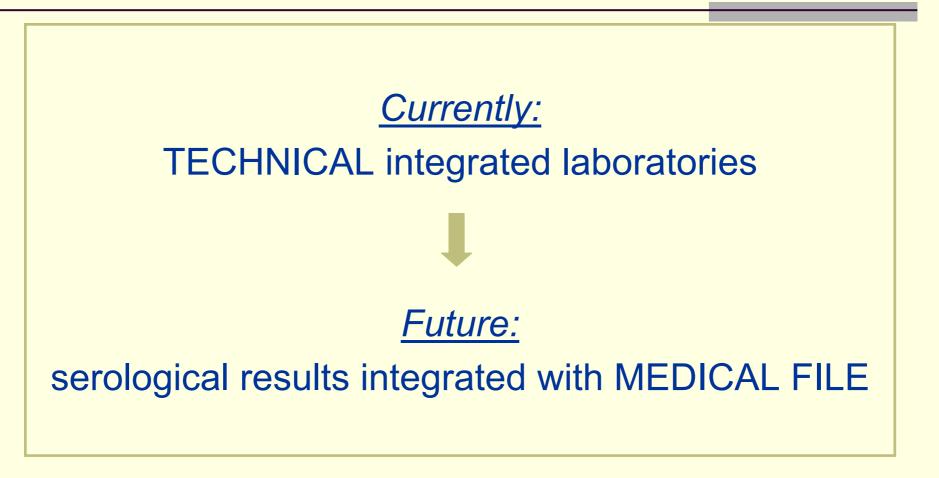
methods:

CF, IHA, IF: total $Ab \rightarrow ELISA$: IgA, M, G

 \Rightarrow interpretation

 ↑ sensitivity, specificity
 of new methods

ELISA detection systems


colorimetry to chimiluminescence

- automation:
 - result
 - chain
 - open versus closed system

Future prospects

Conclusion

- The optimal diagnosis of an infection is **direct diagnosis**, based on identification of the <u>pathogen</u> or its components
- BUT it is not always possible
 - ⇒ infectious serology is the main alternative
- Serological results: lack of specificity
 - retrospective diagnosis
 - difficult to interpret
- Results must be **integrated** in clinical context
 - ⇒ collaboration between clinician and biologist is mandatory

Acknowledgments

Prof. P. De Mol (Medical Microbiology, CHU-Liège)

Dr P. Melin (Medical Microbiology, CHU-Liège)