New treatments in sepsis

Wouter Meersseman, MD University Hospital Gasthuisberg Medical Intensive Care Leuven

16 Nov '07, Oud Sint-Jan, Brugge

Sepsis on European ICU's

- Overall, 64% of 3147 patients received antibiotics
- Sepsis identified in 37% patients
 - 60% culture positive
 - Gram positive **40%**
 - Gram negative 38%
 - C albicans 13%
- Commonest sites of infection:
 - Lung 68%
 - Abdomen 22%
 - Blood **20%**
 - UTI **14%**

Vincent et al, Crit Care Med 2006 34:344

Death from sepsis on European ICU's

Vincent et al, Crit Care Med 2006 34:344

Clinical trials in sepsis.....

.....The last five years....

Inflammatory cascade

Coagulation cascade

Bernard GR, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344:699-709

Mortality and APACHE II Quartile

Drotrecogin alpha (activated) is not effective in adults with severe sepsis and a low risk of death*, and is associated with an increased rate of serious bleeding

* APACHE II < 25 or Single organ failure

Abraham et al, NEJM 2005 353: 1332. ADDRESS trial group

Glucocorticoids in acutely ill patients

Adrenal responsiveness to 250 µg ACTH

Effect of steroids on 28 day mortality

RR 0.88 (0.78 to 0.99) p = 0.03

Review: Comparison: Outcome:	Corticosteroids for tre 01 Steroids versus co 08 28-day all-cause n	ating severe sepsis ontrol nortality	and septic shock (copy))						
Study		Treatment	Control		R	R (fixed)		Weight	RR (fixed)	0
or sub-category		D/IN	D/N			95% CI		76	95% CI	Quality
01 All studies										
Klastersky 197		22/46	18/39		_		_	5.87	1.04 [0.66, 1.63]	A
Schumer 1976		9/86	33/86					9.95	0.27 [0.14, 0.53]	С
Lucas 1984		5/23	5/25					1.44	1.09 [0.36, 3.27]	С
Sprung 1984		33/43	11/16				-	4.83	1.12 [0.77, 1.61]	С
Bone 1987		65/191	48/190					14.51	1.35 [0.98, 1.84]	А
VASSCSG 198	7	23/112	24/111				-	7.27	0.95 [0.57, 1.58]	A
Luce 1988		22/38	20/37		-		-	6.11	1.07 [0.72, 1.60]	A
Slusher 1996		6/36	4/36					- 1.21	1.50 [0.46, 4.87]	в
Bollaert 1998		7/22	12/19		-	_		3.88	0.50 [0.25, 1.02]	A
Briegel 1999		3/20	4/20					1.21	0.75 [0.19, 2.93]	A
Chawla 1999		6/23	10/21					3.15	0.55 [0.24, 1.25]	A
Annane 2002		82/151	91/149		-	-∎-		27.61	0.89 [0.73, 1.08]	A
Yildiz 2002		8/20	12/20					3.62	0.67 [0.35, 1.27]	A
Confalonieri		0/23	7/23			<u> </u>		2.26	0.07 [0.00, 1.10]	A
Oppert 2004		7/18	12/23					3.18	0.75 [0.37, 1.50]	A
Tandan 2005		11/14	13/14					3.92	0.85 [0.62, 1.15]	D
Subtotal (95% C	D	866	829			♠ 🔪		100.00	0.88 [0.78, 0.99]	
Total events: 30	9 (Treatment), 324 (Cor	ntrol)								
Test for heterog	eneity: Chi ² = 30.71, df	= 15 (P = 0.010), I ² =	: 51.2%							
Test for overall effect: Z = 2.13 (P = 0.03)										
				0.2	0.5	1	2	5		
	Eavours treatment Eavours control									

Favours treatment

Favours control

Annane et al, BMJ 2004 329:480

Effect of steroids on shock reversal

RR 1.6 (1.27 to 2.03) p < 0.0001

Review:	Corticosteroids for tre	ating severe sep	osis and septic shock				
Comparison:	arison: 01 Steroids versus control						
Outcome:	06 Number of patients	s with shock reve	ersal				
Study		Treatment	Control	RR (fixed)	Weight	RR (fixed)	
or sub-category		n/Ν	n/N	95 [°] % CI	%	95% CI	Quality
01 Shock revers	sal at day 7						
Sprung 1984		25/43	6/16	- -	5.36	1.55 [0.78, 3.06]	С
Bone 1987		85/130	83/114		54.21	0.90 [0.76, 1.06]	A
Bollaert 1998		15/22	4/19	· · · · · · · · · · · · · · · · · · ·	- 2.63	3.24 [1.30, 8.10]	A
Briegel 1999		17/20	12/20	↓ -∎	7.35	1.42 [0.95, 2.12]	A
Chawla 1999		16/23	9/21	↓ ■	5.77	1.62 [0.92, 2.85]	A
Annane 2002		60/151	40/149		24.68	1.48 [1.06, 2.06]	A
Subtotal (95% C	0	389	339	◆	100.00	1.22 [1.06, 1.40]	
Total events: 21	8 (Treatment), 154 (Cor	ntrol)					
Test for heterog	eneity: Chi² = 20.38, df	= 5 (P = 0.001), I	² = 75.5%				
Test for overall	effect: Z = 2.75 (P = 0.0	006)					
03 Shock revers	sal at day 7 in trials on l	ong course of lov	w dose corticosteroids				
Bollaert 1998		15/22	4/19		- 6.51	3.24 [1.30, 8.10]	A
Briegel 1999		17/20	12/20	⊢ ∎	18.19	1.42 [0.95, 2.12]	A
Chawla 1999		16/23	9/21		14.26	1.62 [0.92, 2.85]	A
Annane 2002		60/151	40/149		61.04	1.48 [1.06, 2.06]	A
Subtotal (95% C	0	216	209		100.00	1.60 [1.27, 2.03]	
Total events: 10	8 (Treatment), 65 (Cont	trol)					
Test for heterogeneity: Chi ² = 2.85, df = 3 (P = 0.41), l ² = 0%							
Test for overall	effect: Z = 3.91 (P < 0.0	0001)					
			0.	1 0.2 0.5 1 2 5	10		
Favours control Favours treatment							

Favours control

Favours treatment

Annane et al, BMJ 2004 329:480

Controversies remain...

- Differences related to dosages
- Optimal definition of adrenal insufficiency
- Etomidate bolus depresses adrenal function
- No free cortisol routinely measured
- What about fludrocortisone?

In the meantime: probably useful to administer 200 mg hydrocortisone/day (for a maximum of 7 days) in vasopressor dependent septic shock

CORTICUS

- International, prospective double-blind RCT of hydrocortisone in patients with moderate – severe septic shock
- HC 50 mg q6h for 5 d then tapering to d 11. No fludrocortisone.
- Primary EP 28 d mortality in nonresponders
- Approx 500 patients enrolled, study closed Nov 2005

CORTICUS - Results

- No effect on 28 day mortality in whole population or pre-identified subgroups
- Did not reverse shock in whole population or pre-identified subgroups
- Did reduce the time to shock reversal
- No significant problem with superinfection

Intensive insulin therapy in critically ill patients

Van den Berghe G et al, NEJM 2001 345:1359

Intensive insulin therapy in medical patients on ICU for > 3 days					
	ARR (%)	OR (95% CI)	P value		
ICU mortality	38.1 31.3 <mark>∆ 6.8%</mark>	0.69 (0.50-0.95)	0.02		
In hospital mortality	52.5 43.0 <mark>Δ 9.5%</mark>	0.63 (0.46-0.89)	0.003		

OR and p value corrected for type & severity of illness

Van den Berghe G et al, N Engl J Med 2006 354:449

Yet more clinical trials in sepsis.....

Modlin & Cheng, Nature Med 2004 10:1173

TAK-242

- Novel small molecule signal transduction inhibitor
- Effective when given up to 4 h after LPS challenge in mice
- Phase I human studies confirm broad inhibition of cytokines
- Excellent safety profile

Putative target site of TAK-242

TAK-242 exhibits a TLR4-specific mode of action

Phase II study of Eritoran (E5564) in sepsis

N = 293	28 d mortality (%)	RRR (%)	р
Placebo	33.3		
Low dose	32.0		
High dose	26.9	6.4	0.34

Eisai, press release, Aug 2005

Ethyl pyruvate prevents lethal CLP sepsis in mice by reducing HMG-B1

Ulloa et al, PNAS 2002; 99:12351

The interaction of endotoxin (LPS) with host cells

Total cholesterol concentration and outcome in 111 ICU patients

LOS = Length of ICU Stay MOD = Multiple Organ Dysfunction

Gordon et al. Crit Care Med.

Hypothesis: linking lipid levels, cytokines, and clinical outcome

GR270773 Lipid Emulsion

"Inflammasomes catapult cryopyrin from involvement in a rather obscure group of disorders into the realm of common bacterial infections"

A role for statins in sepsis?

- Pleiotropic anti-inflammatory effects
- Prevent lethal sepsis in mice used either as prophylaxis or therapy (Merx, Circulation 2005 112:117)
- Beneficial in human LPS-challenge model

(Steiner, Circulation 2005 111:1841)

- Clinical observational studies suggest statins reduce risk of complications/death in pts admitted with sepsis
 (Almog, Circulation 2004 110:880)
 (Kruger, Intensive Care Med 2006 32:75)
- Statins reduce the risk of developing sepsis after cardiovascular event

(Hackam, Lancet 2006 367:413)

Statins do not protect against CAP An example of the "healthy user" effect?

Univariate analysis	Stat	in use		
n = 3415	YES	NO	OR	р
Death (%)	8	10	0.75	0.18
ICU admission (%)	9	10	0.84	0.39
Death or ICU Admission (%)	15	19	0.8	0.15
Multivariate analysis				
Death or ICU Admission (%)			1.1	0.61

Majumdar et al, BMJ 2006 333:999

So what's going on here?

The 1992 ACCP/SCCM Consensus definitions for Sepsis and Organ Failure

- Infection: microbial phenomenon characterised by an inflammatory response to the presence of micro organisms or the invasion of normally sterile host tissue by these organisms.
- Sepsis: systemic response to infection manifested by ≥ 2 of:
 - Temp > 38°C or < 36°C</p>
 - HR > 90 bpm
 - RR > 20 bpm or PaCO₂ < 32 mmHg
 - WBC > 12 x 10⁹/L, < 4 x 10⁹/L or >10% band forms

Because there is no common definition for sepsis, how likely is it that the diagnosis of sepsis is being missed? Is it...

Ramsay, Crit Care 2004 8:R409.

Systemic host responses in <u>Severe Sepsis</u> analyzed by causative microorganism and treatment effects of drotrecogin alfa Opal et al; Clin Infect Dis 2003 37:50-8

"Eligible patients had known or suspected infections,
 ...had ≥ 3 signs of systemic inflammation, and had
 ≥ 1 sepsis-associated acute organ dysfunction"

Glucocorticoid insufficiency in patients who present to the hospital with <u>Severe Sepsis:</u> a prospective clinical trial Manglik et al, Crit Care Med 2003 31:1668-75

"Severe sepsis was defined as sepsis with organ dysfunction, inadequate perfusion, or hypotension. Abnormalities could include, but were not limited to, lactic acidosis, oliguria, and/or acute mental status.

INDICATIONS AND USAGE Xigris is indicated for the reduction of mortality in adult patients with severe sepsis (sepsis associated with acute organ dysfunction) who have a high risk of death (e.g., as determined by APACHE II, see CLINICAL STUDIES). Efficacy has not been established in adult patients with severe sepsis and lower risk of death. Safety and efficacy have not been established in pediatric patients with severe sepsis.

Xigris[™] product label, FDA website

2001 SCCM/ESICM/ACCP ATS/SIS International Sepsis Definitions Conference

Levy MM et al, Crit Care Med 2003 31:1250 - 1256 2001 SCCM/ESICM/ACCPATS/SIS International Sepsis Definitions Conference Diagnostic criteria for sepsis (selected)

- Infection, & some of the following:
- Temp > 38.3 or < 36
- HR > 90
- Tachypnea
- Altered mental status
- Pos fluid balance
- Hyperglycaemia

- WBC > 12 x10⁹/L,<4 x10⁹/L
- CRP or PCT > 2 SD
- Hypotension
- Hypoxaemia
- Acute oliguria
- Raised creatinine
- Coagulopathy
- lleus

Putative markers of sepsis

- Microbial products

 LPS; Bacterial DNA
- Physiological

 T; HR; RR; CI; Urine
- Cell surface markers

 CD40; CD11b; CD64
- Soluble receptors
 - IL-2R; sELAM-1; sTNFR; sCD14 etc

- Cytokines
 - IL-1; II-1ra; IL-6; IL-8;
 IL-10; TNF; HMG-1 etc
- Acute phase proteins

 CRP; LBP; Fibrinogen
- Coagulation factors

 FDPs; PAI-1; TPA etc
- Various
 - PCT; Lactate;
 Elastase etc

Can we do better? The elusive marker of sepsis

"More than 80 putative markers of sepsis have been described. All correlate with mortality (but none are useful) in stratifying patients with respect to diagnosis or response to therapy. Their limitations arise from the challenges of establishing causality in a complex process like sepsis, and of stratifying patients into more homogeneous populations".

Measures, markers and mediators: Towards a staging system for clinical sepsis. A Report of the 5th Toronto Round Table. Marshall JC et al, Crit Care Med 2003 31:1560

Is this disease.....

really the same as this disease?

Cohen et al, Crit Care Med 2001 29:880-886

Some provocative conclusions..

- Sepsis is an important clinical syndrome that is associated with a significant morbidity and mortality, but.....
- We can't define it
- We can't agree how to recognise it at the bedside
- We can't agree on a test(s) to detect it

So what should we do....?

- Retain "sepsis" as a clinical term but abandon the idea of developing a single "anti-sepsis" drug
- Focus instead on specific infectious diseases
- Continue to explore pathophysiology to identify new targets, but for defined settings
- Go for incremental improvement rather than the big bang – the cancer model