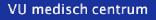
Detection of pathogens in sepsis: what is the role of molecular techniques?

Dr. RPH Peters 16 november 2007 VU University Medical Center Prof. CMJE Vandenbroucke-Grauls Prof. PHM Savelkoul Prof. ABJ Groeneveld Dr. MA van Agtmael

Content

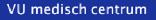
- Why could molecular methods be useful?
- FISH for identification of microorganisms in blood cultures
- Pro's and con's of PCR for detection of BSI
- Clinical potential of the bacterial DNA load (BDL) in blood
- Future perspectives

Gelegenheit, 2 weite nach meiner Ankunft zu veröffentlichen u Thatsachen mitzuteil

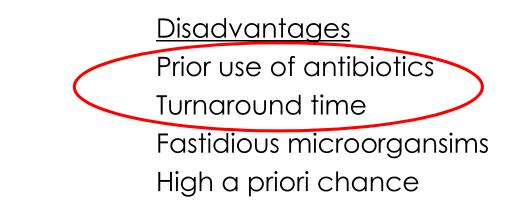

bloodstream infections

Remco P H Peters, Michiel A van Agtmael, Sven A Danner, Paul H M Savelkoul, and Christina M J E Vandenbroucke-Grauls

New techniques have emerged for the detection of bacteria in blood, because the blood culture as gold standard is slow and insufficiently sensitive when the patient has previously received antibiotics or in the presence of fastidious


new era in the detection of bacteraemia, which necessitates a thorough reassessment of current concepts and ingrained beliefs on how and when the newer molecular techniques might make a clinical difference.

Blood culture

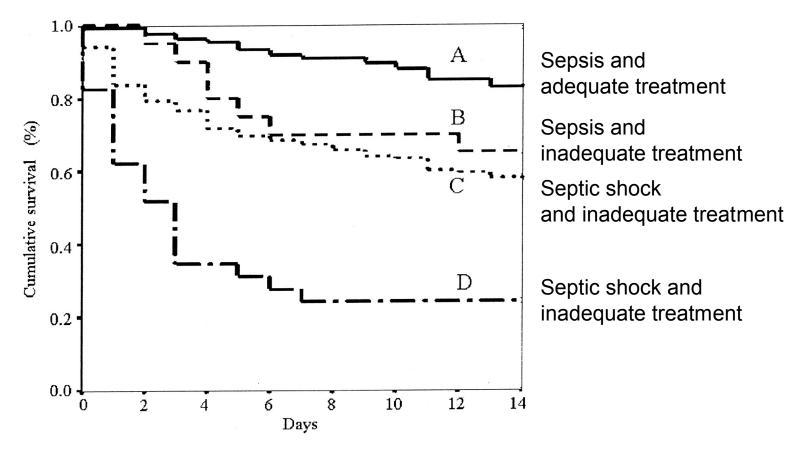


<u>Advantages</u> Confirms diagnosis Deep-seated infections Evaluation febris e.c.i. Epidemiological tool <u>Disadvantages</u> Prior use of antibiotics Turnaround time Fastidious microorgansims High a priori chance

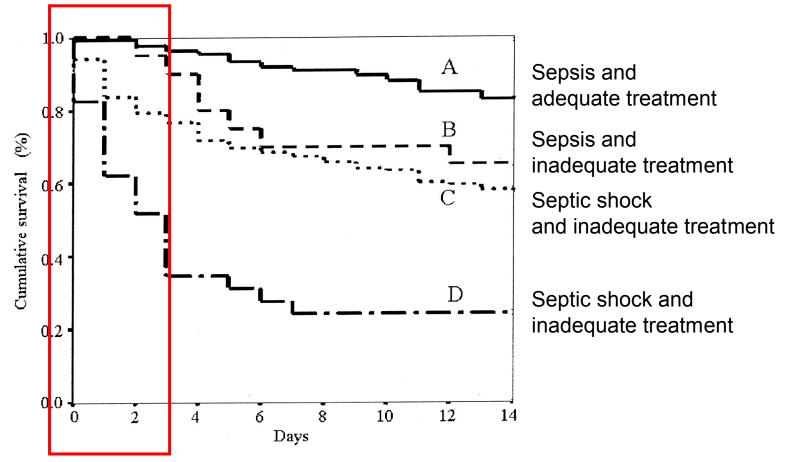
Blood culture

<u>Advantages</u> Confirms diagnosis Deep-seated infections Evaluation febris e.c.i. Epidemiological tool

Antibiotics and blood cultures

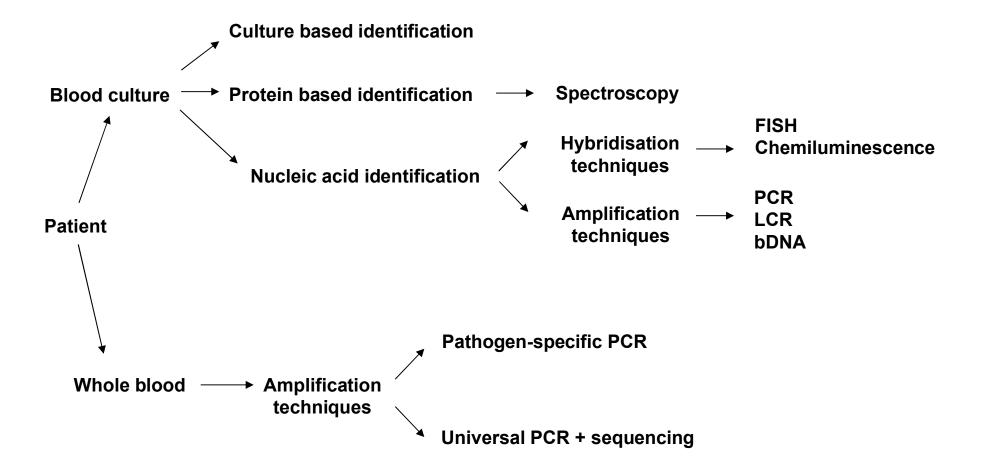


Grace CJ et al. Clin Infect Dis 2001

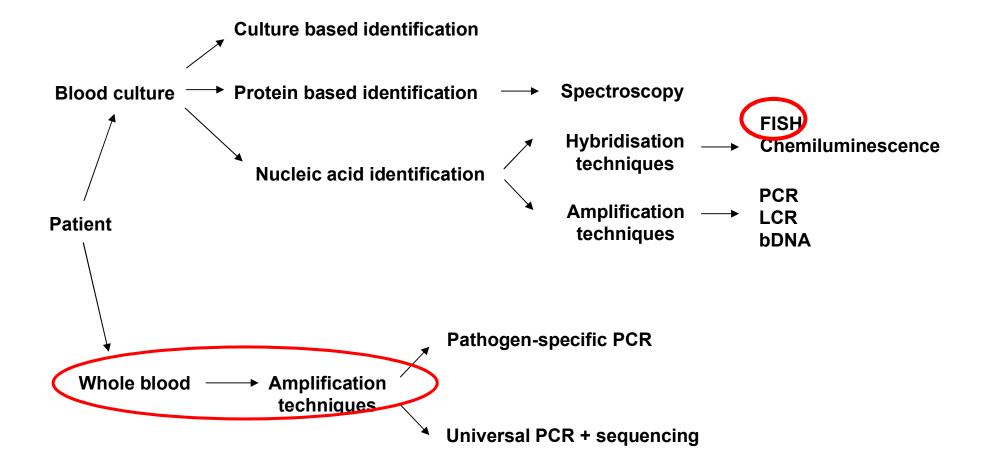

(1/-

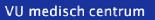
Adequate therapy is associated with better prognosis

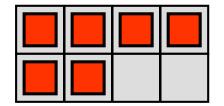
Valles J et al. Chest 2003

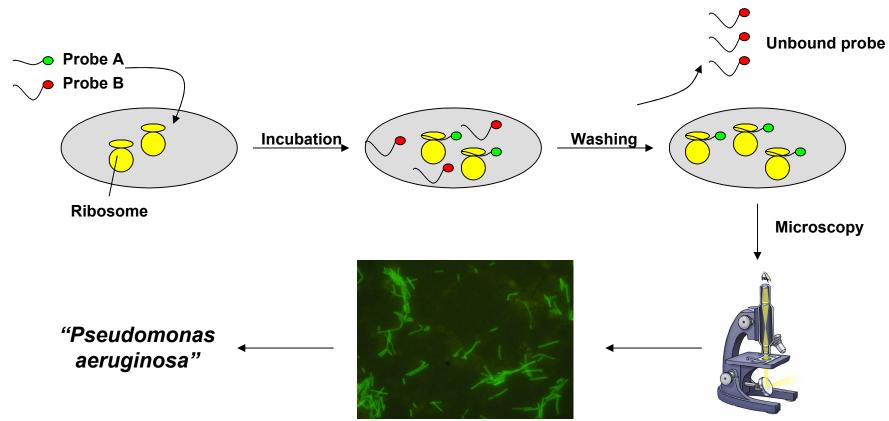

Adequate therapy is associated with better prognosis

Valles J et al. Chest 2003


Molecular techniques


Molecular techniques




Peters RP et al. Lancet Infect Dis 2004

FISH technology

Application of blood culture fluid to slide Fixation and permeabilisation of microorganisms

FISH probes

VU medisch centrum

Oligonucleotide probes

Eubacterial/panfungal Enterobacteriaceae Staphylococcus genus Streptococcus genus Enterococcus genus Staphylococcus aureus Streptococcus pneumoniae Streptococcus pyogenes Streptococcus agalactiae Enterococcus faecalis

PNA probes

Staphylococcus aureus Escherichia coli Pseudomonas aeruginosa Klebsiella pneumoniae Klebsiella pneumoniae Enterococcus faecium Enterococcus galinarum Escherichia coli/Shigella spp. Klebsiella pneumoniae Haemophilus influenzae Bacteroides/Prevotella spp. Neisseria meningitidis Pseudomonas aeruginosa Proteus/Morganella spp. Helicobacter pylori Candida albicans Candida tropicalis Candida glabrata Candida krusei Candida dubliensis Candida parapsilosis Clostridium difficile Brucella spp. Fusobacterium nucleatum Fusobacterium necrophorum

Campylobacter ssp. Candida albicans Candida krusei Candida tropicalis Candida parapsilosis Candida glabrata Mycobacterium tuberculosis Mycobacterium avium Mycobacterium kansasii Helicobacter pylori

VU medisch centrum

- Probe sensitivity and specificity >95% for target microorganism
- Identification dependent on the probes included in the assay

Study	No. of blood cultures	Identification of family/genus	Identification of species	Probes not included
Kempf VA <i>et al.</i> (JCM 2000)	115	97%	66%	3%
Jansen GJ <i>et al.</i> (JCM 2000)	182	89%	65%	9%
Peters RP <i>et al.</i> (JCM 2006)	200	91%	79%	8%
Sogaard M <i>et al.</i> (JCM 2005)*	1231	-	46%	53%

*Only probes specific for S. aureus, E. coli, P. aeruginosa, C. albicans were included in this study

• The use of oligonucleotide FISH results in faster identification of microorganisms than with culture techniques in routine practice

	FISH	Provisional identification		Final identification	
Microorganism	TTI (h)	TTI (h)	Time gain (h) ^b	TTI (h)	Time gain (h)
Staphylococci	4.1	5.5	1.4 ± 1.2	22.9	18.8 ± 1.6
Streptococci	4.5	5.8	1.3 ± 1.1	23.1	18.6 ± 1.3
Enterococci	4.7	7.1	2.4 ± 1.3	23.1	18.4 ± 1.7
Enterobacteriaceae	3.8			23.1	19.3 ± 1.5
Pseudomonas ae r uginosa	3.6	5.7	2.1 ± 0.9	23.7	20.1 ± 1.1
Yeasts	4.9			47.0	42.1 ± 1.4

^a TTI, mean time to identification.

^b Difference in times to identification in hours (means ± standard deviations) between FISH and provisional culture.

• With a modified FISH procedure, the time to identification is reduced to less than 1 hour

• PNA FISH for identification of Candida albicans in blood cultures reduces use of caspofungin

		ļ	n=31			r	า=41	
		С.	albicans			Nor	n-C. albicans	
Drug (administration method)	DDD/	patient	Cost (\$)/patient		DDD/patient		Cost (\$)/patient	
(administration intened)	2003	2004	2003	2004	2003	2004	2003	2004
Fluconazole (oral)	11.4	14.9	23	29	8.2	8.7	16	17
Fluconazole (i.v.)	7.4	8.8	696	827	5.7	2.7	536	254
Caspofungin	8.7	3.2 ^a	2,871	1,056	11.9	8.7	3,927	2,871
ABLC	9.8	10	1,540	1,570	10	9.7	1,570	1,522
Total ^b			169,290	107,942			260,107	191,224

^{*a*} Statistically significant (P < 0.05).

^b The last row shows the total overall cost per year.

- Total saving of PNA FISH identification is \$1700 per patient
- Similar data in other study by Alexander and colleagues and for discrimination between Staphylococcus aureus and CNS

Forrest AN et al. *J Clin Microbiol* 2006 Forrest AN et al. *J Antimicrob Chemother* 2006 Alexander BD et al. *Diagn Microbiol Infect Dis* 2006

Discussion of FISH

- Fast identification of majority of microorganisms in blood cultures
- Panel of probes based on local epidemiology
- Time-gain compared to culture identification
- FISH is cost-effective in situations with clear consequences for clinical management

- Fast identification of majority of microorganisms in blood cultures
- Panel of probes based on local epidemiology
- Time-gain compared to culture identification
- FISH is cost-effective in situations with clear consequences for clinical management
- --> Does the time-gain to identification have sufficient impact on clinical management to warrant implementation of FISH in routine practice?

• The majority of therapeutic decisions related to bloodstream infections are taken shortly after presentation

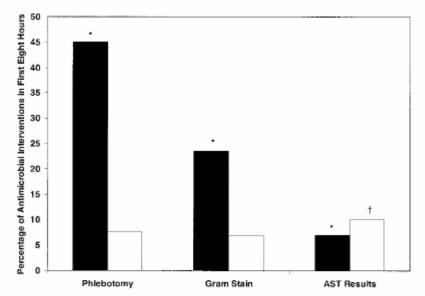
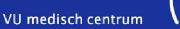



FIG. 1. Percentage of all antimicrobial interventions occurring within the first 8 h (initiations, solid bars; discontinuations, open bars) after each event of interest. *, P < 0.001 for differences noted in therapy initiations. \dagger , P < 0.05 for differences noted in therapy discontinuations.

• The majority of therapeutic decisions related to bloodstream infections are taken shortly after presentation

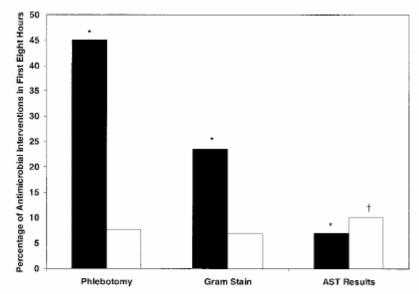


FIG. 1. Percentage of all antimicrobial interventions occurring within the first 8 h (initiations, solid bars; discontinuations, open bars) after each event of interest. *, P < 0.001 for differences noted in therapy initiations. †, P < 0.05 for differences noted in therapy discontinuations.

Does PCR directly on blood samples provide a fast and reliable alternative to the blood cultures?

Munson EL et al. J Clin Microbiol 2003

VU medisch centrum

Target	Population	Sensitivity	Specificity
Eubacterial 16S	Neonates	96%	66%
	Neonates with sepsis	96%	99%
Panfungal	Haemato-oncology patients	75%	70%
	Patients with CAP	75%	96%
Strantagaggus provinciag	Meningitis patients	92%	98%
Streptococcus pneumoniae	Retrospective case- control study	69%	-
Staphylococcus aureus	ICU admissions	75%	93%
Enterococcus faecalis	ICU admissions	73%	96%
Noissorio moninaitidio	Meningitis patients	88%	98%
Neisseria meningitidis	Children with meningitis	100%	17%
Haemophilus influenzae	Meningitis patients	100% (n=9)	99%
Salmonella typhi	Patients suspected of typhoid fever	64%	79%
	Patients suspected of	92%	95%
Aspergillus species	invasive aspergillosis	67%	100%

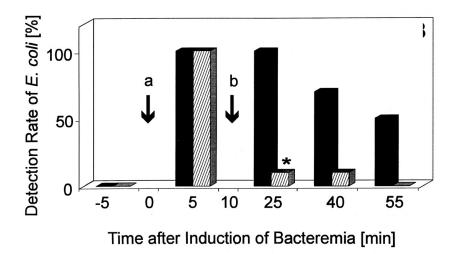
VU medisch centrum

Target	Population	Sensitivity	Specificity
Eubacterial 16S	Neonates	96%	66%
	Neonates with sepsis	96%	99%
Panfungal	Haemato-oncology patients	75%	70%
	Patients with CAP	75%	96%
Strontococcus proumonico	Meningitis patients	92%	98%
Streptococcus pneumoniae	Retrospective case-	69%	-
	control study		
Staphylococcus aureus	ICU admissions	75%	93%
Enterococcus faecalis	ICU admissions	73%	96%
Noissorio moningitidio	Meningitis patients	88%	98%
Neisseria meningitidis	Children with meningitis	100%	17%
Haemophilus influenzae	Meningitis patients	100% (n=9)	99%
Salmonella typhi	Patients suspected of typhoid fever	64%	79%
Asporaillus spesies	Patients suspected of	92%	95%
Aspergillus species	invasive aspergillosis	67%	100%

VU medisch centrum

Target	Population	Sensitivity	Specificity
Eubacterial 16S	Neonates	96%	66%
	Neonates with sepsis	96%	99%
Panfungal	Haemato-oncology patients	75%	70%
	Patients with CAP	75%	96%
Streptococcus pneumoniae	Meningitis patients	92%	98%
	Retrospective case- control study	69%	-
Staphylococcus aureus	ICU admissions	75%	93%
Enterococcus faecalis	ICU admissions	73%	96%
Noissorio moningitidio	Meningitis patients	88%	98%
Neisseria meningitidis	Children with meningitis	100%	17%
Haemophilus influenzae	Meningitis patients	100% (n=9)	99%
Salmonella typhi	Patients suspected of typhoid fever	64%	79%
Aspergillus species	Patients suspected of	92%	95%
Asperginus species	invasive aspergillosis	67%	100%

VU medisch centrum

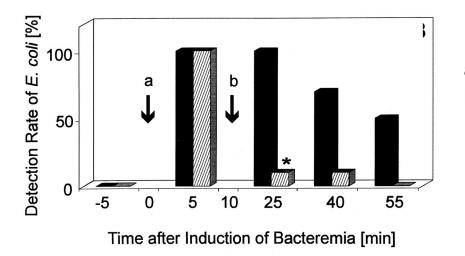

Target	Population	Sensitivity	Specificity
Eubacterial 16S	Neonates	96%	66%
	Neonates with sepsis	96%	99%
Panfungal	Haemato-oncology patients	75%	70%
	Patients with CAP	75%	96%
Strantagaggus proumaniag	Meningitis patients	92%	98%
Streptococcus pneumoniae	Retrospective case-	69%	-
	control study		
Staphylococcus aureus	ICU admissions	75%	93%
Enterococcus faecalis	ICU admissions	73%	96%
	Meningitis patients	88%	98%
Neisseria meningitidis	Children with meningitis	100%	17%
Haemophilus influenzae	Meningitis patients	100% (n=9)	99%
Salmonella typhi	Patients suspected of typhoid fever	64%	79%
	Patients suspected of	92%	95%
Aspergillus species	invasive aspergillosis	67%	100%

VU medisch centrum

- Sensitivity of PCR assays on whole blood for BSI: 64-75%
- Higher sensitivity: blood samples of neonates or children (96-100%) or from patients suspected of meningitis (88-100%)
- To improve sensitivity:
 - -Increase volume of blood in DNA isolation
 - -Purification steps prior to DNA isolation
 - -Test multiple blood samples
 - -Adequate processing controls

- Additional cases identified by PCR, blood culture negative
 - -PCR false-positive: contamination, aspecific PCR reactions

-Blood culture false-negative: use of antibiotics, sampling error


a. Induction of E. coli bacteraemia

VU medisch centrum

b. Treatment with cefotaxim

- Additional cases identified by PCR, blood culture negative
 - -PCR false-positive: contamination, aspecific PCR reactions

-Blood culture false-negative: use of antibiotics, sampling error

a. Induction of E. coli bacteraemia

VU medisch centrum

b. Treatment with cefotaxim

• Difficulty with 'Gold standard': Bacteraemia vs. DNAemia

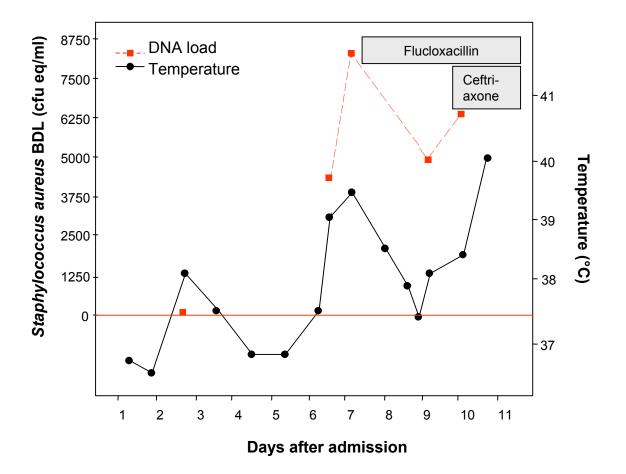
VU medisch centrum

- Positive S. aureus or E. faecalis DNAemia but negative blood cultures:
 -6/12 (50%): likely related to infection (clinical & microbiological data)
 -5/12 (42%): clinical data consistent with S. aureus/E. faecalis infection
 -1 case unlikely related to infection: other focus found
- Clinical interpretation of a positive DNAemia: a potential role for the bacterial DNA load (BDL)?

	Invasive SP pneumonia	Non-invasive SP pneumonia	Other pneumonia	P-value
BDL (cfu equiv./mL)	350 (<125-2350)	210 (<125-900)	<125	<0.001

Peters RP et al. *J Clin Microbiol 2007* Peters RP et al. *Submitted*

VU medisch centrum


BDL and severity of infection

- Higher S. aureus / S. pneumoniae BDL for invasive vs. localised infection
- Higher BDL in patients with S. pneumoniae meningitis vs. pneumonia
- Higher BDL on admission for nonsurviving vs. surviving children with pneumococcal or meningococcal meningitis
- Correlation of S. pneumoniae BDL with C-reactive protein, IL-6, IL-10 and TNF α levels

- PCR: fast results, no culture step required
- Improvement of sensitivity is essential for routine application
- Validation of other PCR assays for panels or algorithms on blood
- Sensitivity of the assays is related to patient category and condition
- A positive DNAemia is related to infection with the microorganism in the majority of cases
- The possible association of BDL with clinical and microbiological severity of infection warrants further study

1/2

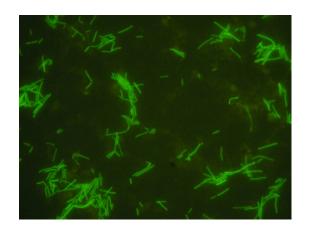
• BDL for monitoring of infection? Kinetics of DNA in blood?

Peters RP et al, J Clin Microbiol 2007

VU medisch centrum

• Simultaneous molecular detection, identification, quantification and susceptibility determination by micro-array analysis

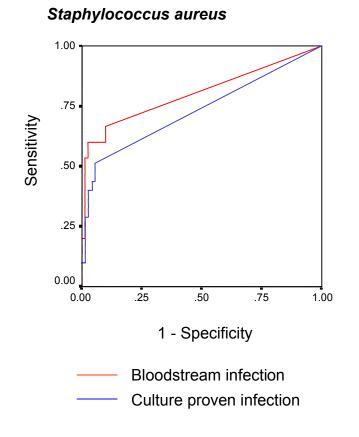
Gene probes	S. aurous	P. aeruginosa	E. col	S. epidermidis	CoNS Gram-negative	Gram-pos.
		BC BC BC BC	80	BC BC BC BC BC		BC 6
aeruginosa	1 2 3 4 5 6	0 7 8 9 10 11 12 13 16 15 16 1	A 2 - 5			
laß						
laN						
dgFl						
ned						
aprA aprE						
nin D						
dipR lesRa				+++++++++++++++++++++++++++++++++++++++		
asRb				+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
usho				+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
NoA.						+++++++++++++++++++++++++++++++++++++++
Not-1						
mexA						
Ort252						
DriX						
08/2010						
000572						
pa1048						
pa1069						
pa 1848						
pad082						
nehG						
PhzA						
FLC						
nicht						
plaN plaR PsuP				+++++++++		
DeaD				+++++++++++++++++++++++++++++++++++++++		
ourK				+++++++++++++++++++++++++++++++++++++++		
rhiA				+ + + + + + + + + + + + + + + + + + + +		
rtai R				+++++++++++++++++++++++++++++++++++++++	+ # + + # + # + + + + # # + + +	*******
torA				+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
uwrDII						
vanv						
kigp.K ExoS						
EveS						
(ovA						
pa0825						
pa0636						
pa3866						
Phz8						
olAp						
PIXADE						
oWC						
Owo						
oyocinS1						
pyooinS1im						
pyocinis2						
pys2(1)			┓┫┫┥┥┥┥┥			
NT 04(1)						
pys2(2)			┓┛╹╵╵		┝╋┼┽╉┽╉┽┼┽╉╉┼┼	
6/303						
thiê -						


- Molecular techniques emerge for faster and more sensitive detection of bloodstream infections
- FISH identification of microorganisms in positive blood cultures is reliable and cost-effective
- PCR on whole blood is a promising tool for rapid detection of BSI
- Potential value of BDL in blood to identify high-risk patients and to monitor infection

r.peters@vumc.nl

Patient M.: an 86-years old man

- History of relapsing urinary tract infections
- Presentation with fever, pollakisuria and mental status alterations
- Urine cultures negative, blood culture: Gram-negative rods
- Ceftriaxone and gentamicin were started empirically for urosepsis
- FISH/VITEK: Pseudomonas aeruginosa --> Therapy change


• PNA FISH for discrimination between *Staphylococcus aureus* and CNS in blood cultures: reduction in use of vancomycin and hospital costs

	n=84	n=119	
		PNA	
	Control (\$)	FISH (\$)	Savings (\$)
Average bed cost/patient	9002	6298	2704
Average pharmacy costs/patient	3371	2386	985
Average laboratory costs/patient ^a Total costs/patient	1248 13 621	932 9616	316 4005

^aLaboratory costs include radiology, chemistry and hematology costs.

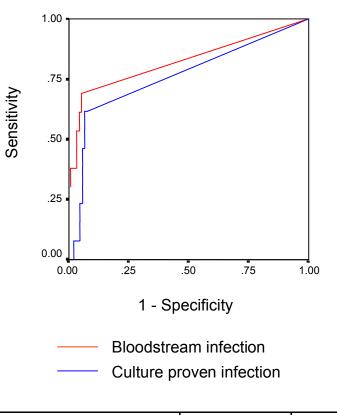

- Retrospective study --> prospective confirmation warranted
- Oligonucleotide probes are cheaper than PNA probes

Figure 1. Receiver operating characteristic curves of bacterial DNA load for bloodstream infection and culture proven infection.

	AUC	P-value
Bloodstream infection	0.80	<0.001
Local microbial infection	0.73	<0.001

Enterococcus faecalis

	AUC	P-value
Bloodstream infection	0.82	<0.001
Local microbial infection	0.76	<0.001