Corticosteroids in meningitis

Matthijs Brouwer

Department of Neurology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center University of Amsterdam Amsterdam, the Netherlands

Conflicts of interest

• No conflicts of interest

- Financial support (Personal grants):
 - European Society for Clinical Microbiology and Infectious

Diseases

– European Federation of Neurological Societies

Corticosteroids in meningitis

- Dexamethasone in bacterial meningitis
- Dexamethasone in tuberculous meningitis

Bacterial meningitis

am

- 35,000 Europeans each year
- Most important causative microorganisms
 - Streptococcus pneumoniae
 - Neisseria meningitidis
- High mortality
- Frequently neurological sequelae

van de Beek *et al*, N Engl J Med, 2006 Brouwer *et al*, Clin Microbiol Rev, 2010

Meningitis mortality - history

Schwartz, N Engl J Med, 2004

Bacterial meningitis treatment

- Antibiotic treatment not enough to improve prognosis
- Long search for adjunctive treatment
 - Anti-inflammatory agents → corticosteroids, IgG, paracetamol
 - Neuroprotection \rightarrow hypothermia
 - Osmotic agents \rightarrow mannitol, glycerol
 - Anti-coagulants \rightarrow heparin, activated protein C

Animal model and steroids

Entry and multiplication Severity of disease of bacteria in CSF - Bacterial load Lysis of bacteria Inflammatory response TNF-a, IL-1b, IL-6 liposacharide Inflammation continues after bacterial killing lipoteichoic acid Severity inflammation ~ outcome coagulation **†** fibrinolysis **** a ernezbilin Dexamethasone Reduction inflammation raised c disturd intra cranial Reduction ICP pressure or all oedema

Scheld et al , J Clin Invest 1980 Giampoalo et al, Ann Neurol 1981 Tauber et al, Am J Pathol 1992

•

Initial clinical studies

- First studies published 1963 / 1969 no effect
- Animal experiments early '80s
- Several small trials in children '80-'90s
 - Reduction in severe hearing loss
 - Haemophilus influenzae meningitis
 - Conflicting results

Lebel et al, N Engl J Med 1988, 1989 Odio et al, N Engl J Med 1991

Meta-analysis 1997

DXM reduces severe hearing loss

Only in *H. influenzae* meningitis

Vaccination *H. influenzae* type B 99% reduction cases

Trend towards lower mortality in pneumococcal meningitis

Randomized controlled trial 1993-2001

301 patients \rightarrow 157 DXM, 144 placebo

DXM 10mg iv every 6 hours for 4 days, before or with antibiotics

	Death		Unfavorable outcome	
	DXM	Placebo	DXM	Placebo
All patients	11/157 (7%)	21/144 (15%)	23/157 (15%)	36/144 (25%)
S. pneumoniae	8/58 (14%)	17/50 (34%)	15/58 (26%)	26/50 (52%)

de Gans, van de Beek, N Engl J Med 2002

Following European DXM Trial

Treatment guidelines IDSA:

Standard treatment DXM in adults with bacterial meningitis

Proven effect only in pneumococcal meningitis

Stop DXM if meningococcus or other pathogen is identified

Negative trials 2002-2007

- Malawi, children, n=598, no effect
- Malawi, adults, n=465, no effect
- Vietnam, adults, n=217, no effect in suspected BM
 - However: reduced mortality confirmed BM
- South-America, children, n=654, reduction hearing loss *H. influenzae*
 - Methodological problems

Molyneux et al, Lancet 2002 Scarborough et al, N Engl J Med 2007 Nguyen et al, N Engl J Med 2007 Peltola et al, CID 2007

Interpretation

- False positive result European DXM trial?
- Differences in study population?
 - High rate of HIV positivity Malawi (90%)
 - Partially treated meningitis / tuberculous meningitis
 - Different genetic background?

IPD meta-analysis 2010

- Data of individual patients included in meta-analysis
 - 5 Trials: Malawi (2), South-America, Europe, Vietnam
 - Search for subgroups that benefit from DXM
- No effect on mortality / hearing loss / neurological sequelae in prespecified subgroups
- Reduction hearing loss in survivors (post-hoc)
- Conclusion: effect DXM remains unproven

Cochrane meta-analysis 2010

- Inclusion of all RCTs on DXM in bacterial meningitis
- No effect on mortality overall
- Trend towards lower mortality in adults
- Lower rates of hearing loss and neurological sequelae
- Subgroups: lower mortality in pneumococcal meningitis
- Effect limited to high income countries

Value meta-analyses

am

- Individual patient data meta-analysis
 - Superior method
 - Ignores previous studies
- Cochrane meta-analysis
 - Includes trials of lower quality
 - More bias
- Back to own population
 - Fase IV (implementation) study in the Netherlands

Implementation study Netherlands

am

- Implementation of DXM in pneumococcal meningitis
- 2 nationwide prospective cohort studies in the Netherlands
 - 1998-2002, n=357, before DXM
 - 2006-2009, n=352, after DXM
- Inclusion criteria
 - Positive CSF culture, community acquired meningitis
- Multivariate analysis to correct for confounders

Baseline characteristics

Characteristic	2006-2009 357 Episodes	1998-2002 352 Episodes	Absolute difference (%)
Age – year (means ±SD)	59±15	58±17	
Male sex	167 (47%)	171 (49%)	-2%
Classic triad	206/352 (58%)	188/347 (54%)	-4%
Coma	65/257 (18%)	68/351 (19%)	-1%
Individual CSF predictors of bacterial meningitis	328/348 (94%)	301/320 (94%)	0%

Treatment characteristics

Characteristic	2006-2009	1998-2002	Absolute
	357 Episodes	352 Episodes	difference (%)
Delay in therapy due to imaging	155 (43%)	149 (42%)	+1%
Antibiotic treatment according to guidelines	118 (33%)	117 (33%)	0%
Strains in PCV7 vaccine	125/327 (38%)	149 (42%)	-4%
Antibiotic resistance rate	2/327 (0.6%)	2 (0.6%)	0%

Dexamethasone treatment

Characteristic	2006-2009	1998-2002	Absolute
	357 Episodes	352 Episodes	difference
Dexamethasone received	329 (92%)	59 (17%)	75%)*
Started before or with first dose of antibiotics	301 (84%)	11 (3%)	81%*
10mg QID for 4 days started before or with first dose of antibiotics	276 (77%)	11 (3%)	74%*

* p <0.001

Complications and outcome

Characteristic	2006-2009	1998-2002	Absolute	P-value
	357 Episodes	352 Episodes	difference	
Neurologic complications	239 (60%)	263 (75%)	-15%	0.001
Cardiorespiratory failure	133 (37%)	134 (38%)	-1%	0.82
Death	71 (20%)	107 (30%)	-10%	0.001
Complete recovery	218 (61%)	175 (50%)	+11%	0.002
Hearing impairment	33/280 (12%)	55/243 (22%)	-10%	0.001

Outcome

Brouwer et al, Neurology, 2010

Dexamethasone

Dexamethasone regimen Predicted 80-% Unfavorable outcome Observed - 0.7% 60-- 3.6% - 12.6% 40-20-0 No Standard Other n=28 n=276 n=53

Brouwer et al, Neurology, 2010

• After successful implementation DXM similar reduction in

mortality and unfavourable outcome of pneumococcal meningitis

as found in European trial

• No other explanation for improved prognosis but

dexamethasone

• Supports further use of DXM

Implementation study 2 - meningococci

am

- Similar design
- 1998-2002, n=258 *vs.* 2006-2011, n=100
- Clinical presentation similar, less rash
- Strong reduction Serogroup C following vaccination
- DXM before or with antibiotics in 89% in 2006-2011 cohort
- Full 4 day course 81%

Implementation study 2 - meningococci

Characteristic	2006-2011	1998-2002	Difference
	100 Episodes	258 Episodes	
Arthritis	5/96 (5%)	32/258 (12%)	-7% (p=0.049)
Outcome			
Death	4 (4%)	19 (7%)	-3% (p=0.24)
Unfavorable outcome	12 (12%)	30 (12%)	0%
No or minor disability	88 (88%)	228 (88%)	0%
Neurologic findings at discharge			
Hearing impairment	3/96 (3%)	19/237 (8%)	-5% (p=0.10)

Brouwer et al, presented at ICAAC Chicago, 2011

Implementation study 2 - conclusion

am

- DXM safe in meningococcal meningitis
- Reduces auto-immune arthritis
- Trend towards lower hearing loss

Implementation study 2 - conclusion

am

- DXM safe in meningococcal meningitis
- Reduces auto-immune arthritis
- Trend towards lower hearing loss

Why hesitate to give DXM?

Is DXM harmful?

Are there complications of DXM therapy?

•Cohort studies / RCTs show no increase in

- gastrointestinal bleedings
- hyperglycemia requiring insulin
- herpes zoster infections

•New complication?

- Delayed intracerebral thrombosis

Delayed cerebral thrombosis

- 6 patients with pneumococcal meningitis
 - DXM and antibiotics
 - Excellent recovery
 - Day 7-19 post admission fever, headache, coma
 - Cerebral infarctions posterior circulation
 - Inflammatory response CSF
 - Negative CSF culture

am

Delayed cerebral thrombosis

- 4 dead, 2 severely disabled
- Autopsy (n=2): diffuse intravascular thrombosis w/o vasculitis
- 2 surviving patients received high dose steroids

Schut et al, Neurology 2009

Delayed cerebral thrombosis

- Reactivation of inflammation after effect DXM wears off?
- Immunologic reaction targeting cerebral vessels
- Not described in pre-dexamethasone era
- Incidence 1-2%
- Treatment high dose steroids, followed by tapering

NB the patients were included in the implementation study

• DXM reduces mortality and sequelae in adult pneumococcal meningitis in high income countries

am

- DXM reduces mortality and sequelae in adult pneumococcal meningitis in high income countries
- DXM is safe to give in adult meningococcal meningitis and reduces arthritis and probably hearing loss

am

- DXM reduces mortality and sequelae in adult pneumococcal meningitis in high income countries
- DXM is safe to give in adult meningococcal meningitis and reduces arthritis and probably hearing loss

am

• There is no effect of DXM in resource poor settings (Africa)

- DXM reduces mortality and sequelae in adult pneumococcal meningitis in high income countries
- DXM is safe to give in adult meningococcal meningitis and reduces arthritis and probably hearing loss

am

- There is no effect of DXM in resource poor settings (Africa)
- DXM reduces hearing loss in children
- DXM may be associated with delayed cerebral thrombosis

Future studies

- No new DXM trials are currently performed
- New anti-inflammatory drugs may be superior
- Complement component 5 antibodies in mouse model superior

Future studies - genetics

- Study Tantisira et al, Oct 2011 N Engl J Med
- SNP glucocorticoid-induced transcript 1 gene
- SNP determines response to steroids in asthma

Genetic differences DXM treatment

am

- SNP GLCC1 Rs37972
- Minor allele frequency
 - European ancestry 44%
 - Sub-saharan Africa 15%
- Potential cause of differences between populations in response to dexamethasone in bacterial meningitis
- Genetic association study in progress (NL)

Dexamethasone in tuberculous meningitis

Tuberculous meningitis and DXM

- Small studies since 1953 showed
 - Reduced CSF inflammation
 - Reduced incidence of neurological complications
 - Shorter time to recovery
 - No effect on mortality

Tuberculous meningitis and DXM

- Egypt, children, n=280, 1991
 - Reduced mortality
 - Only in severely affected patients
- South Africa, children, n=141, 1997
 - Reduced mortality
- Vietnam, adults, n=545, 2004
 - Reduced mortality

Girgis IN, Pediatrics 1991; Schoeman Pedicatrics 1997; Thwaites NEJM 2004

DXM in TBM for all?

Untreated HIV

- •No effect in HIV infected patients
- •Vietnames study showed no harm

Only severely affected patients?

 Vietnamese study showed effect in all categories of disease severity

Conclusion DXM in TBM

- All patients with TBM should receive DXM
- Dose 0.3-0.4 mg/kg/day depending on grade
- Tapering over 6-10 weeks

Thank you for your attention

Questions?

Corticosteroids in meningitis

Matthijs Brouwer

Department of Neurology Center of Infection and Immunity Amsterdam (CINIMA) Academic Medical Center University of Amsterdam Amsterdam, the Netherlands

