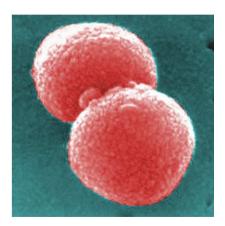
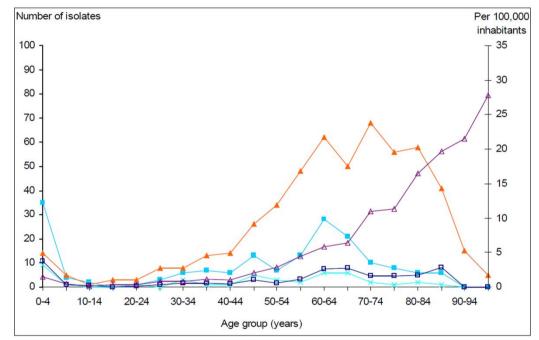
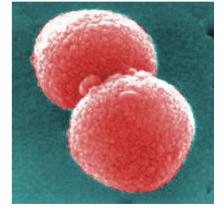
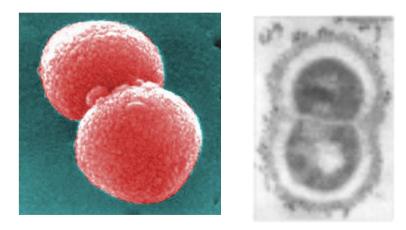

The role of ZmpC in the clinical manifestation of invasive pneumococcal disease

Amelieke J.H. Cremers A mirror between North and South 14-11-2014

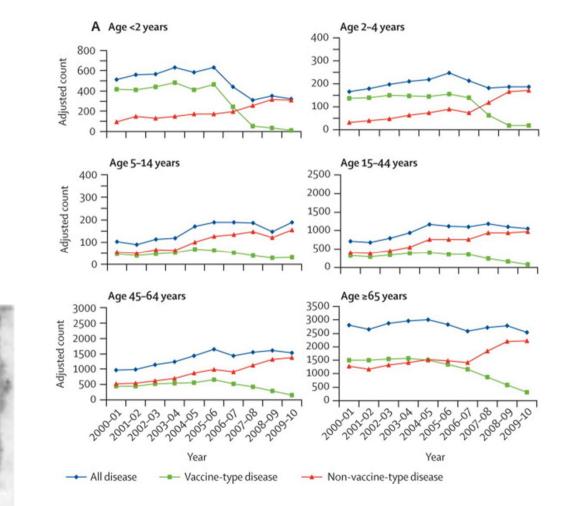



Invasive pneumococcal disease (IPD)

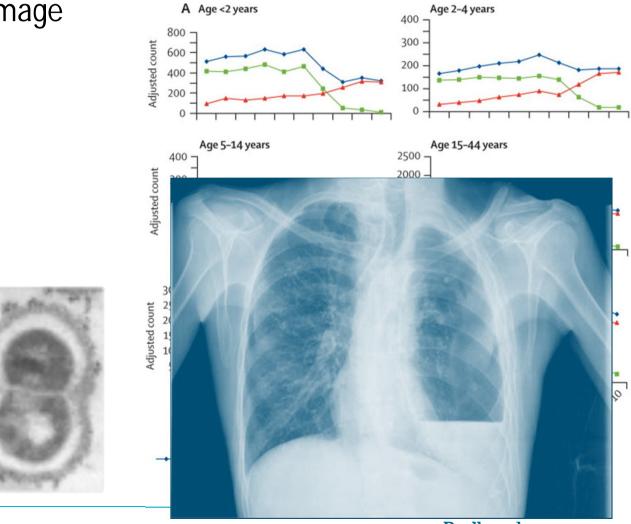

Invasive pneumococcal disease (IPD)

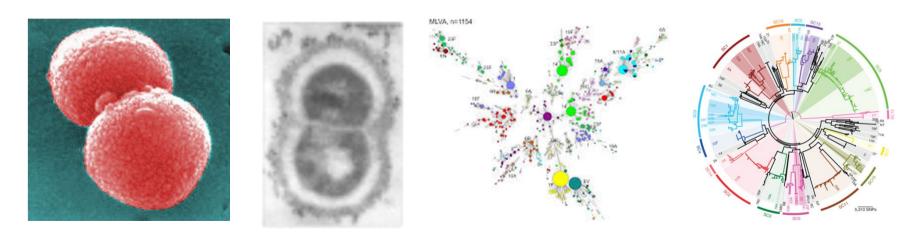


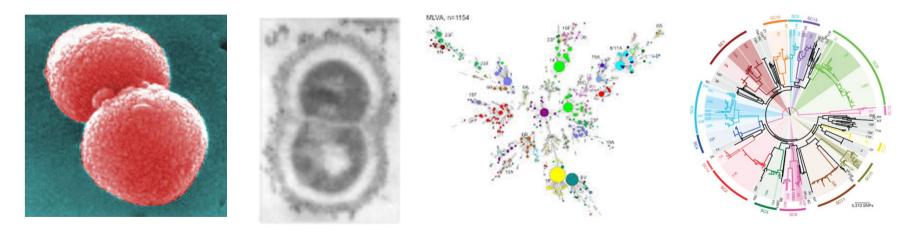
Distribution of S. pneumoniae isolates received in 2010 according to age


Annually 1.6 million deaths worldwide

Serotype – prevention



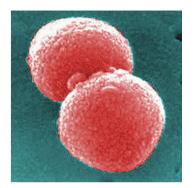

Serotype – replacement



Serotype – clinical image

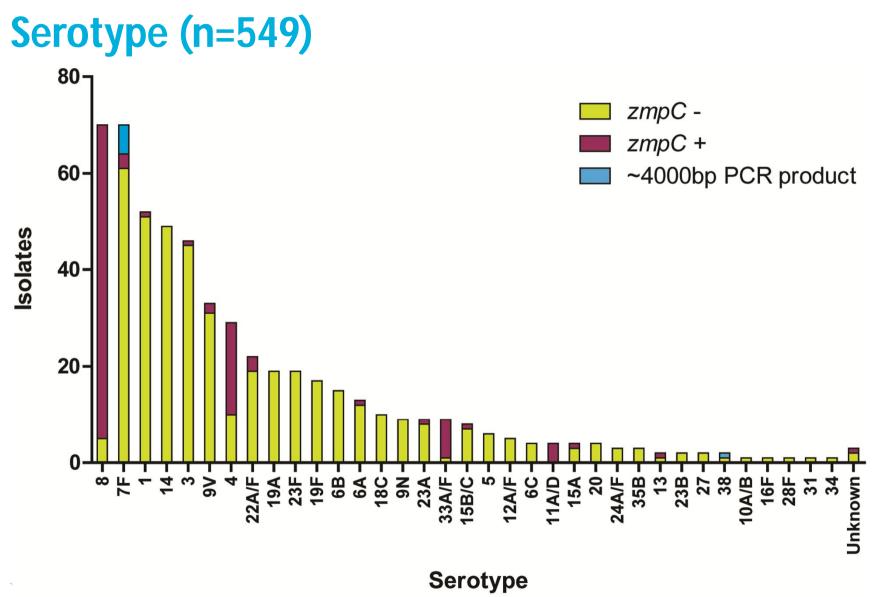
Does clinical diversity among pneumococcal infections originate from the pneumococcal genome?

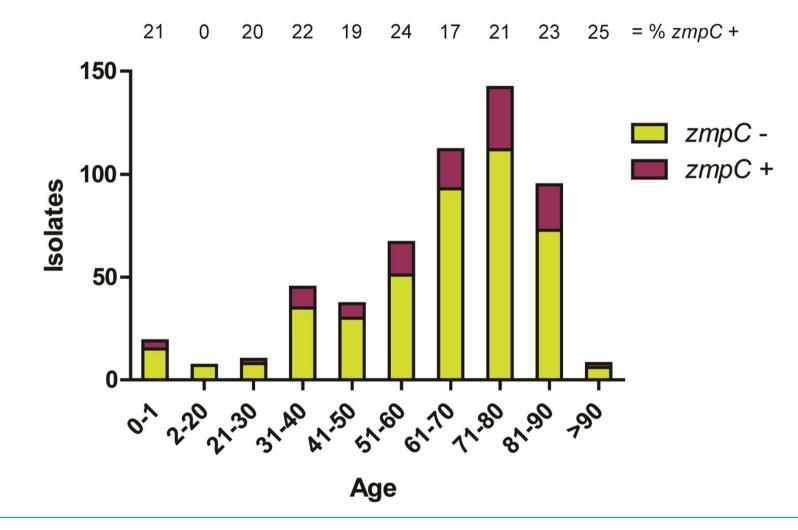
ZmpC


- Present in part of the pneumococcal population
- Large secreted pneumococcal protein
- Sequence higly conserved
- Activates degradation of extracallular matrix, MMP-9
- Inhibits innate host defense, syndecan-1 ectodomain shedding
- Inhibits neutrophil influx, PSGL-1
- More severe disease in animal studies

Its role in different aspects of IPD?

Methods – cohort study


Blood culture +


S.pneumoniae

Two Dutch hospitals '01-'13

Patient characteristics

-

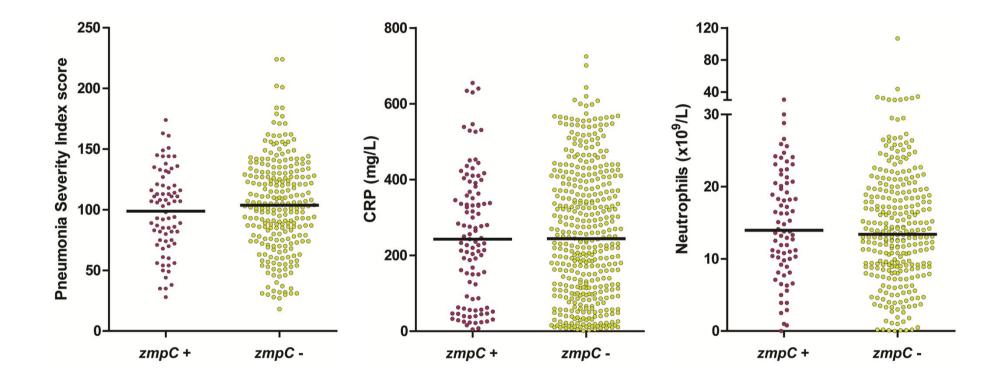
.

	All	zmpC+	zmpC-	p-Value
Subjects	542	112	430	
Age	68 (55-78)	70(57-78)	68 (54-78)	0.649
Males	47.6 (258/542)	39.3 (44/112)	49.8 (214/430)	0.048*
Comorbidities				
Cancer	21.8 (114/522)	18.5 (20/108)	22.7 (94/414)	0.348
Liver disease	6.9 (36/521)	4.7 (5/107)	7.5 (31/414)	0.395
Renal disease	6.2 (32/519)	6.5 (7/107)	6.1 (25/412)	0.823
COPD	21.0 (114/542)	26.8 (30/112)	19.5 (84/430)	0.094
Diabetes mellitus	17.5 (95/542)	12.5 (14/112)	18.8 (81/430)	0.116
Charlson Comorbidity Score	4.4 ± 2.7	4.3±2.4	4.4 ± 2.7	0.079
Immunocompromising therapy	7.4 (40/538)	8.2 (9/110)	7.2 (31/428)	0.688
Smoking	62.4 (204/327)	73.2 (52/71)	59.4 (152/256)	0.033
Treated at hospital A	83.4 (441/529)	88.8 (95/107)	82.0 (346/422)	0.092

....

.

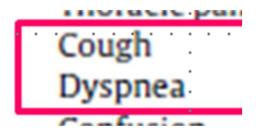
...

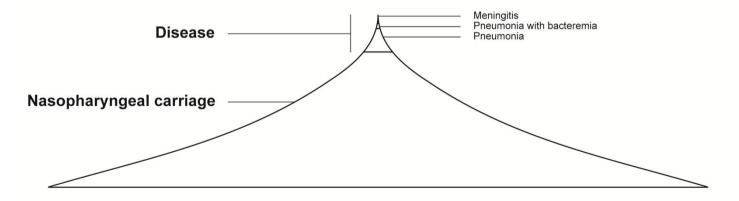

.

.

.

Clinical syndrome


	All	zmpC+	zmpC-	p-Value
Pneumonia	79.0 (387/490)	85.0 (85/100)	77.4 (302/390)	0.098
Pleural empyema	7.5 (29/387)	5.9 (5/85)	7.7 (24/302)	0.645
Meningitis	9.2 (45/490)	8.0 (8/100)	9.5 (37/390)	0.846
Arthritis	1.0 (5/490)	1.0 (1/100)	1.0 (4/390)	1.000
Endocarditis	1.0 (5/490)	2.0 (2/100)	0.8 (3/390)	0.271
Peritonitis	1.0 (5/490)	1.0 (1/100)	1.0 (4/390)	1.000
Sinusitis	0.6 (3/490)	0.0 (0/100)	0.8 (3/390)	1.000
Unknown focus of infection	8.2 (40/490)	4.0 (4/100)	9.2 (36/390)	0.102
Not retrieved	9.6 (52/542)	10.7 (12/112)	9.3 (40/430)	0.651



Severity and course of disease

	All	zmpC+	zmpC-	p-Value
Severity at admission				
Start symptoms (days)	2 (1-4)	2(1-3)	2 (1-4)	0.433
Thoracic pain	45.3 (192/424)	48.2 (40/83)	44.6 (152/341)	0.553
Cough	65.0 (282/434)	75.3 (64/85)	62.5 (218/349)	0.026
Dyspnea	61.6 (270/438)	76.4 (68/89)	57.9 (202/349)	0.001
Confusion	27.0 (93/344)	29.3 (17/58)	26.6 (76/286)	0.669
Temperature (°C)	38.6 (37.8-39.3)	38.6 (37.8-39.35)	38.6 (37.8-39.2)	0.949
Hemoglobin (mmol/L)	7.9 (7.1-8.6)	8.2 (7.3-9.1)	7.9 (6.9-8.5)	0.002*
Leukocytes (x10 ⁹ /L)	15.8 (10.7-21.8)	16.0 (12.0-22.4)	15.7 (10.4-21.7)	0.524
Proportion neutrophils (%)	89 (84-93)	91 (84-93)	89 (85-92)	0.382
pH	7.46 (7.41-7.49)	7.45 (7.42-7.48)	7.46 (7.41-7.49)	0.757
Infiltrate on chest X-ray	79.5 (379/477)	81.8 (81/99)	78.8 (298/378)	0.513
Pleural effusion on chest X-ray	41.4 (127/307)	48.4 (31/64)	39.5 (96/243)	0.197
SIRS	89.4 (389/435)	96.6 (84/87)	87.6 (305/348)	0.018
Course of hospital stay				
ICU admission	23.5 (110/468)	33.3 (32/96)	21.0 (78/372)	0.011
Mechanical ventilation	9.5 (42/442)	15.1 (13/86)	8.1 (29/356)	0.048
Hospital stay survivors (days)	10(6-16)	10 (6-16)	10 (6-16)	0.786
Death	14.5 (71/491)	14.4 (15/104)	14.5 (56/387)	0.990
Time to death (days)	5(1-17)	5(1-23)	5(1-17)	0.669

Spread at the risk of...?

The presence of *zmpC* was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

The presence of *zmpC* was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

 \rightarrow Provide additional value to rapid diagnostics

The presence of *zmpC* was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

 \rightarrow Provide rationale for more tailored prevention of IPD

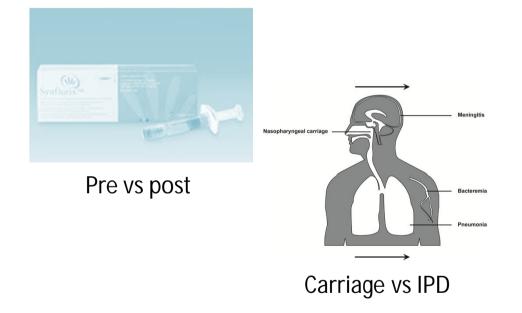
The presence of *zmpC* was associated with a more severe clinical manifestation of IPD

Information on pneumococcal genetic background may be useful

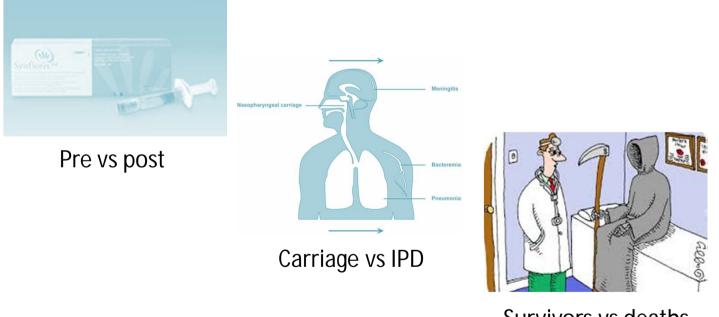
- To identify vulnerable individuals
- To predict clinical presentation, severity and course of disease

 \rightarrow Provide rationale for more tailored prevention of IPD

Is it ZmpC to be targeted?

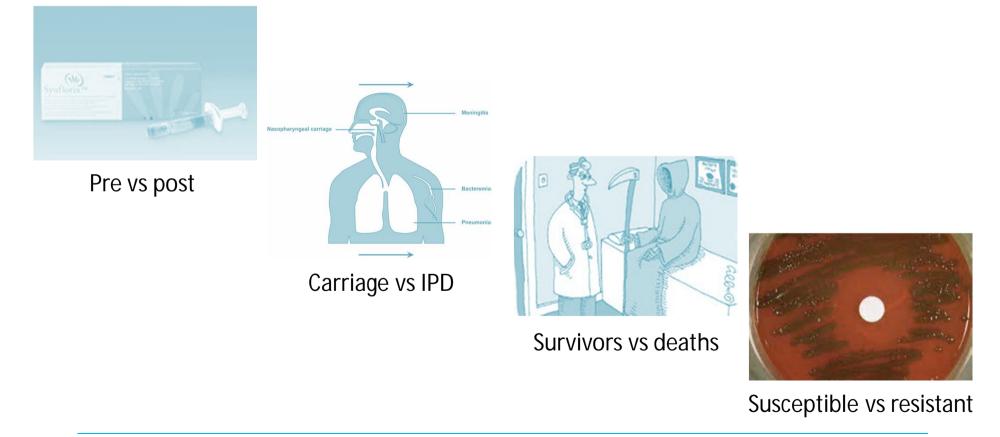

Start from clinically relevant phenotype \rightarrow explore pneumococcal origin

Start from clinically relevant phenotype \rightarrow explore pneumococcal origin



Pre vs post

Start from clinically relevant phenotype \rightarrow explore pneumococcal origin



Start from clinically relevant phenotype \rightarrow explore pneumococcal origin

Survivors vs deaths

Start from clinically relevant phenotype \rightarrow explore pneumococcal origin

Acknowledgements

Canisius-Wilhelmina Ziekenhuis, Nijmegen

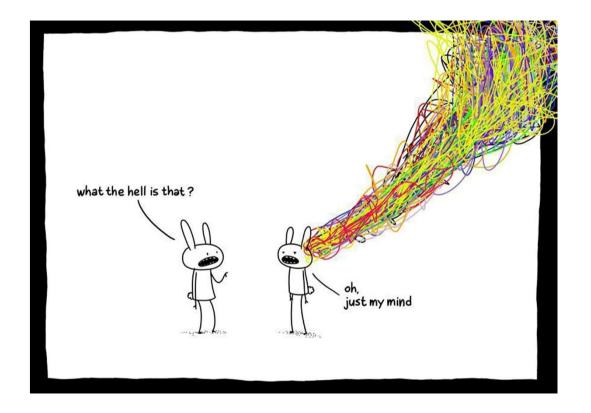
Dr. Jacques Meis

Maasziekenhuis Pantein, Nijmegen

Dhr. Theo Mennen

Dr. Carel Schaars

Laboratory of Pediatric Infectious Diseases, Radboudumc, Nijmegen


Dr. Gerben Ferwerda Christa van der Gaast - de Jongh Ishana Kokmeijer Laszlo Groh Dr. Aldert Zomer Prof. Peter Hermans Dr. Marien de Jonge

maasziekenhuis Pantéin

Thank you for your attention!

Questions?

