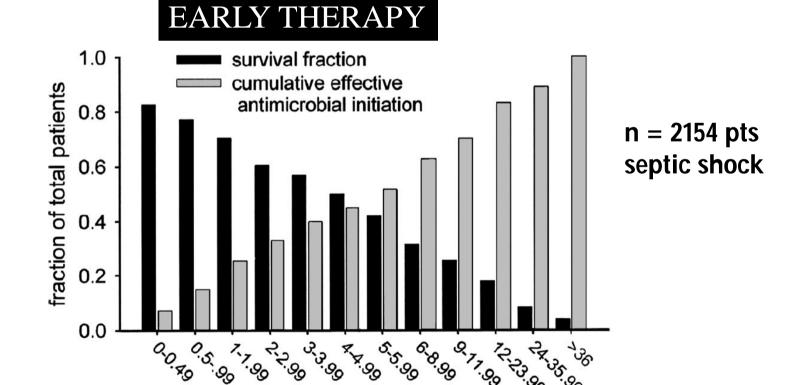

Vancomycin in the ICU: Use and Misuse

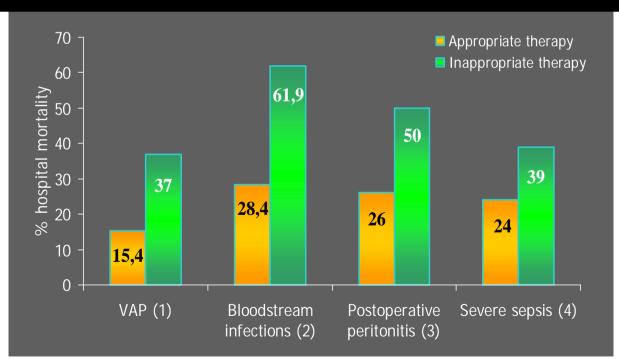
Dr Fabio Silvio TACCONE Department of Intensive Care Hôpital Erasme – Brussels (BELGIUM)



Early antibiotic therapy is mandatory in ICU (septic) patients

time from hypotension onset (hrs)

Kumar, Crit Care Med 2006



Background

Appropriate antibiotic therapy is mandatory in ICU (septic) patients

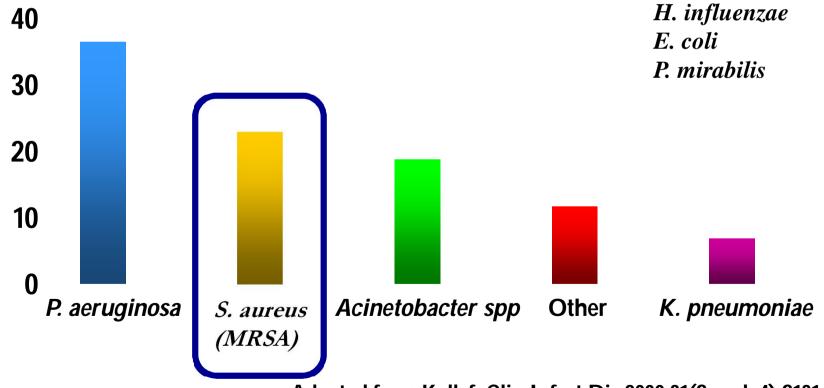
INAPPROPRIATE INITIAL ANTIMICROBIALS

(1) J.Rello et al, Amer J Crit Care Med 1997; 156: 196-200 / (2) E.Ibrahim, Chest 2000; 118: 146-155 /

(3) P.Montravers, Clin Inf Dis 1996; 23: 486-494 / (4) S.Harbarth et al, Am J Med 2003; 115: 529-535

Appropriate Drug

GRAM-NEGATIVE	Nosocomial Infections Neutropenic Immunocompromised Chronic Organ Failure	
GRAM-POSITIVE	High level endemic MRSA Neutropenia Intravascular catheters Nosocomial pneumonia	
FUNGI/YEASTS	IS unresponsive to ATBs Prolonged ATB therapy Positive fungal cultures High risk pts	


ATB should cover 100% potential pathogens

Resistant Strains

Inadequate treatment (%)

Adapted from Kollef. Clin Infect Dis 2000;31(Suppl. 4):S131-S138

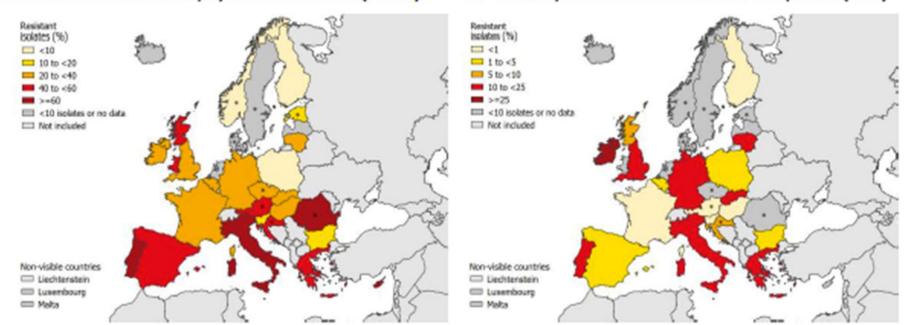
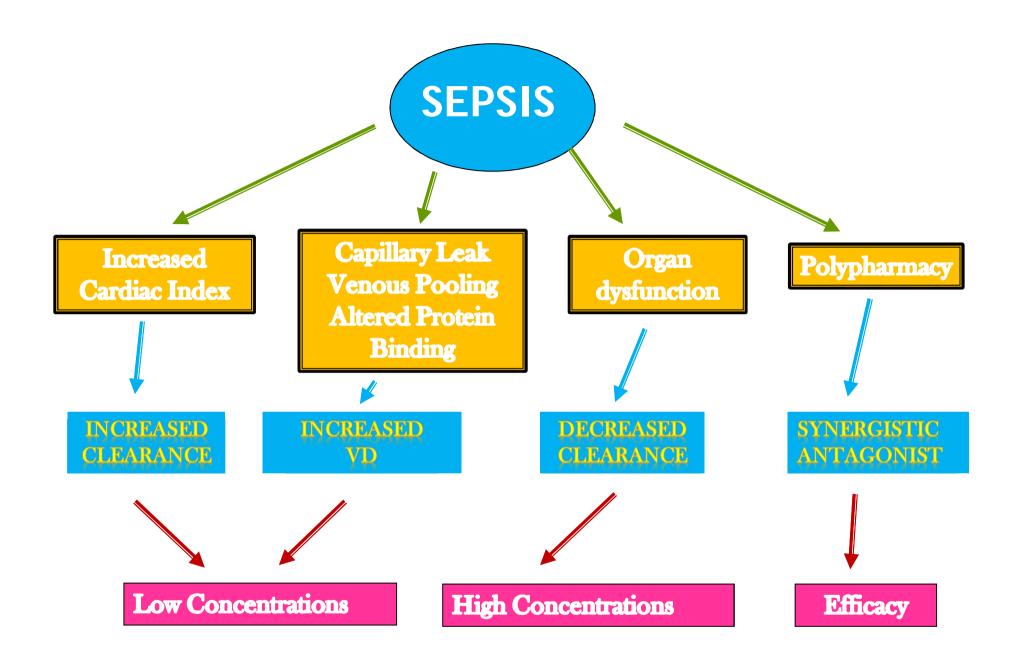

Prevalence of MRSA

Figure 1: Percentage of resistant isolates among isolates from HAIs with known antimicrobial susceptibility testing (AST) results, by species and by country, ECDC PPS 2011–2012³

a. Meticillin-resistant Staphylococcus aureus (MRSA)

b. Vancomycin-resistant Enterococcus species (VRE)

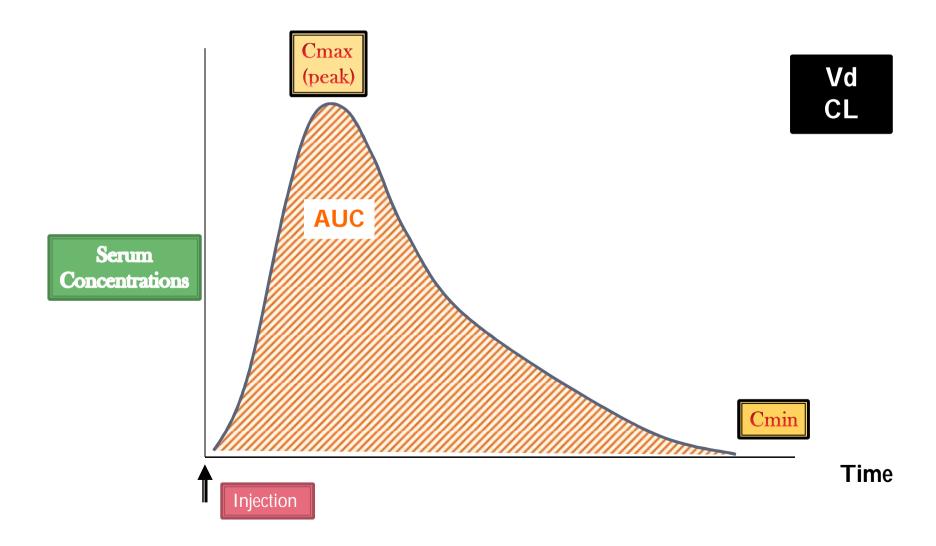


Tricyclic glycopeptide antibiotic

Active against many GPB

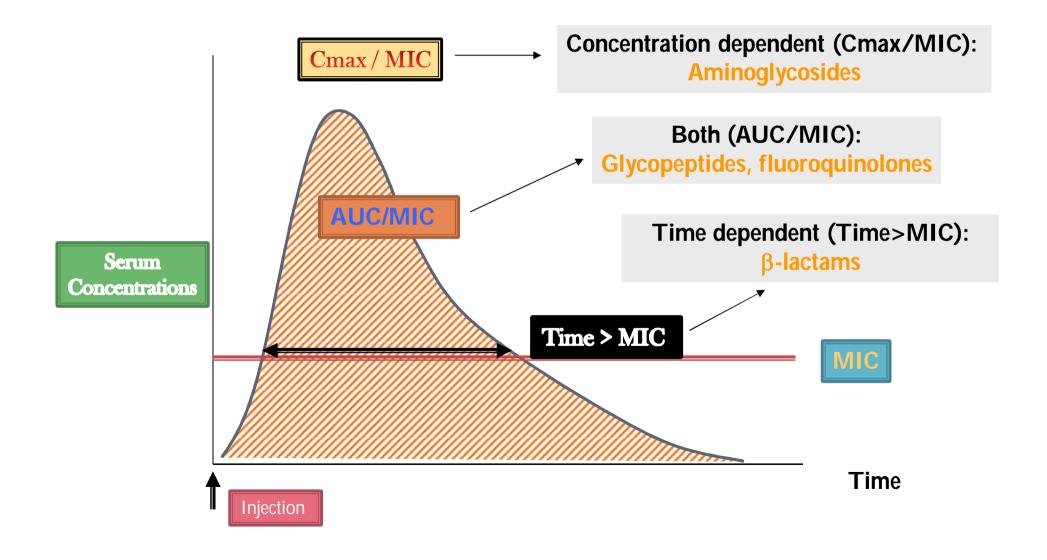
Used mainly for MRSA and Enterococcus

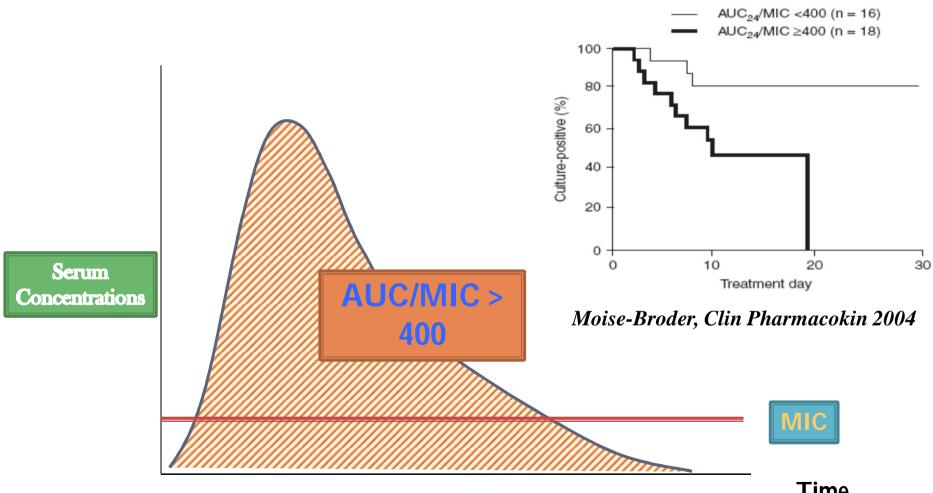
First-line therapy for allergic patients



Adapted from: Roberts and Lipman. Springer 2007

PK parameters




PD parameters

Time

Impact of Vancomycin Minimum Inhibitory Concentration on Mortality among Critically Ill Patients with Methicillin-Resistant *Staphylococcus* aureus Bacteremia

Christian J. Woods, MD;^{1,2} Anindita Chowdhury, MD;¹ Vinay M. Patel, MD;¹ Andrew F. Shorr, MD, MPH¹

Retrospective Study – 2 years n = 99 20% Endocarditis

MIC of 2 mg/L only in 5 pts

TABLE 2. Factors Independently Associated with Mortality

Variable	Adjusted odds ratio	95% confidence interval	P
Age ≥65 years	5.81	2.04-16.55	.001
Endocarditis	4.53	1.35-15.22	.014
Shock	2.98	1.01-8.84	.049
Receipt of mechanical ventilation	2.89	0.98-8.52	.055
Vancomycin MIC of 2 mg/L	13.87	1.12-171.23	.014

NOTE. MIC, minimum inhibitory concentration.

International Journal of Infectious Diseases 17 (2013) e93-e100

High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant *Staphylococcus aureus* infections: a meta-analysis

Jesse T. Jacob a,*, Carlos A. DiazGranados b

477 titles identified from Medline and the Cochrane Library 462 studies excluded (duplicate citations, case reports, letters, reviews, or studies unrelated to research question) 6 titles reviewed from electronic 15 studies reviewed meeting abstracts 1 study excluded (used automated system for classification) 14 studies included from Medline and the Cochrane Library 20 studies included in analysis (partial duplication of 2 studies)

High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant *Staphylococcus aureus* infections: a meta-analysis

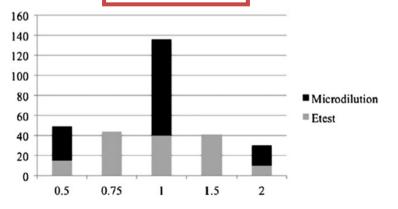
International Journal of Infectious Diseases 17 (2013) e93–e100

Jesse T. Jacob a,*, Carlos A. DiazGranados b

	High N	MIC	Low M	IIC		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
A) 1.1.1 E-test based st	tudies						
Choi	12	34	10	36	6.1%	1.27 [0.63, 2.55]	
Haque	41	115	10	43	7.5%	1.53 [0.84, 2.78]	+-
Hidayat	20	44	7	51	5.3%	3.31 [1.55, 7.08]	
Kullar	66	122	102	198	17.6%	1.05 [0.85, 1.30]	+
Lewis T	0	3	34	139	0.6%	0.51 [0.04, 6.89]	•
Lodise	24	66	4	26	3.7%	2.36 [0.91, 6.15]	
Lustberg	16	66	6	47	4.4%	1.90 [0.80, 4.49]	
Moore	36	116	0	6	0.5%	4.37 [0.30, 63.99]	
Musta	74	249	7	36	6.1%	1.53 [0.77, 3.05]	
Neuner	39	185	1	10	1.1%	2.11 [0.32, 13.82]	-
Price	1	8	14	23	1.1%	0.21 [0.03, 1.32]	•
Soriano	37	130	6	38	5.1%	1.80 [0.82, 3.94]	-
Swami	14	52	12	45	6.5%	1.01 [0.52, 1.95]	
Wilhelm	3	18	3	20	1.7%	1.11 [0.26, 4.82]	
Yamaki	12	57	20	123	6.8%	1.29 [0.68, 2.46]	
Subtotal (95% CI)		1265		841	74.1%	1.40 [1.11, 1.77]	•
Total events	395		236				Lo
Heterogeneity: Tau ² =				(P = 0)	.15); $I^2 = 2$	8%	< 1
Test for overall effect	Z = 2.81 (P = 0.0	05)				
							1

Impact of Vancomycin Exposure on Outcomes in Patients With Methicillin-Resistant Staphylococcus aureus Bacteremia: Support for Consensus Guidelines Suggested Targets

Detroit – 2005/2010 320 patients 52% Vanco Failure


Clinical Infectious Diseases 2011;52(8):975–981

Ravina Kullar, 1 Susan L. Davis, 1,3 Donald P. Levine, 2,3 and Michael J. Rybak 1,2,3

Characteristic $N = 308^a$	Vancomycin failure n (%)	P (vs reference category)	Nephrotoxicity ^b n (%	P (vs reference category)
Trough <10 mg/L (n=70)	46 (65.7%)	0.001	10/65 (15.4%)	.682
Trough 10-14.9 mg/L(n=90)	52 (57.8%)	0.016	13/76 (17.1%)	.476
Trough 15-20 mg/L(n=86)	34 (39.5%)	REF	10/77 (13.0%)	REF
Trough >20 mg/L(n=62)	31 (50.0%)	0.206	17/62 (27.4%)	.032

Higher treatment failure observed in patients with AUC_{24h}/MIC < 421

But this strategy is poorly effective against MIC > 1 μ g/mL

Relationships between vancomycin minimum inhibitory concentration, dosing strategies, and outcomes in methicillin-resistant Staphylococcus aureus bacteremia

Evan C. Clemens^a, Jeannie D. Chan^{a,*}, John B. Lynch^b, Timothy H. Dellit^b

Table 2
Outcomes of treatment failure and mortality

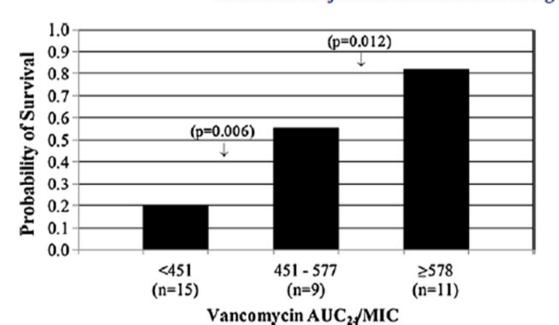
	Vanco MIC ≤1.5 mg/L, $n = 94$ (%)	Vanco MIC = 2 mg/L, $n = 24$ (%)	Odds ratio (95% CI)	P value	Adjusted odds ratio* (95% CI)	P value
Treatment failure	20 (21.3)	7 (29.2)	1.52 (0.55-4.20)	0.416	1.11 (0.24-5.14)	0.891
30 day all-cause mortality	10 (10.6)	2 (8.3)	0.75 (0.15-3.72)	0.729	0.48 (0.05-4.27)	0.510
Infection-related mortality	8 (8.5)	2 (8.3)	0.97 (0.19-4.91)	0.967	0.58 (0.06-5.47)	0.631
Recurrence	4 (4.3)	2 (8.3)	2.05 (0.35-11.98)	0.428	2.18 (0.31-15.24)	0.433
Microbiological failure	8 (8.5)	3 (12.5)	1.54 (0.37–6.33)	0.553	0.88 (0.11-6.86)	0.902

^{*} Multivariate analysis adjusted for age, source of bacteremia, duration of bacteremia \geq 72 h, ICU care, received effective antibiotic within 24 h of positive blood culture, and renal insufficiency (SCr \geq 1.3 mg/dL).

Exposure of vancomycin-sensitive *Staphylococcus aureus* to subinhibitory levels of vancomycin leads to upregulated capsular gene expression.

Initial vancomycin trough level <15 mg/L was an independent risk factor for persistent MRSA bacteremia (OR, 4.25; 95% CI, 1.51-11.96)

Awad, Br J Biomed Sci 2013 Chong, Medicine 2013



Vancomycin pharmacodynamics and survival in patients with methicillin-resistant *Staphylococcus aureus*-associated septic shock[☆]

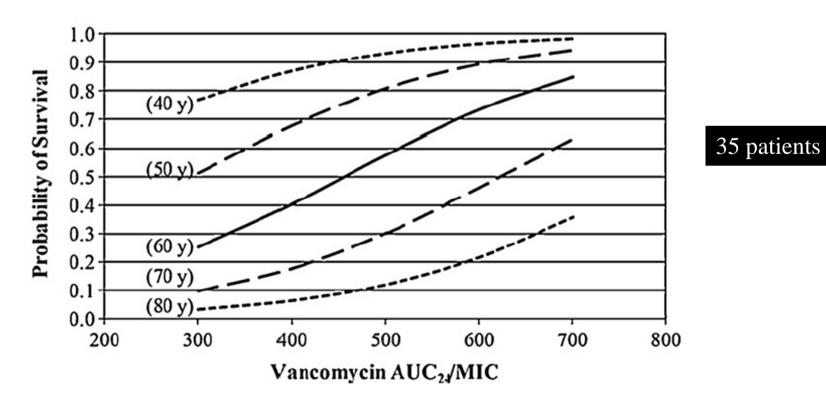
Sheryl Zelenitsky^{a,b,*}, Ethan Rubinstein^c, Robert Ariano^{a,b}, Harris Iacovides^{a,b}, Peter Dodek^d, Yazdan Mirzanejad^e, Anand Kumar^{c,f}, the Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group

International Journal of Antimicrobial Agents 41 (2013) 255–260

35 patients

Vancomycin trough (mg/L) ≥15 mg/L Died (n=18)13.3 \pm 7.0 5 (27.8)

Survived (n = 17)20.1 ± 8.6 12 (70.6)



Vancomycin pharmacodynamics and survival in patients with methicillin-resistant *Staphylococcus aureus*-associated septic shock[☆]

Sheryl Zelenitsky^{a,b,*}, Ethan Rubinstein^c, Robert Ariano^{a,b}, Harris Iacovides^{a,b}, Peter Dodek^d, Yazdan Mirzanejad^e, Anand Kumar^{c,f}, the Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group

International Journal of Antimicrobial Agents 41 (2013) 255–260

Comparison of Conventional Dosing versus Continuous-Infusion Vancomycin Therapy for Patients with Suspected or Documented Gram-Positive Infections

JOSEPH K. JAMES,1; SHIRLEY M. PALMER,1; DONALD P. LEVINE,2 AND MICHAEL J. RYBAK1,2*

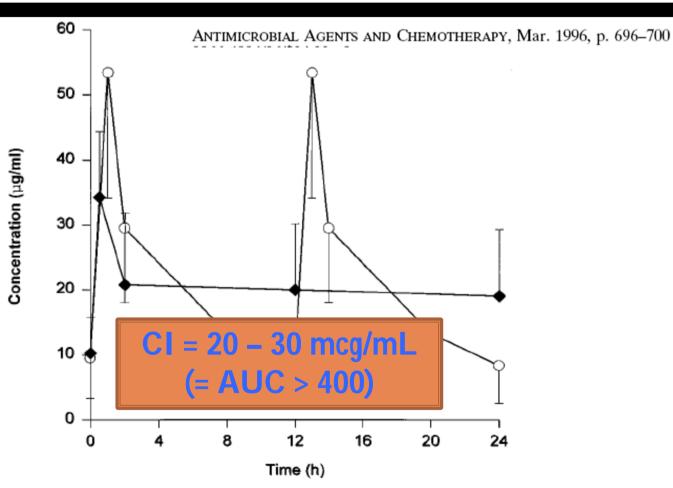
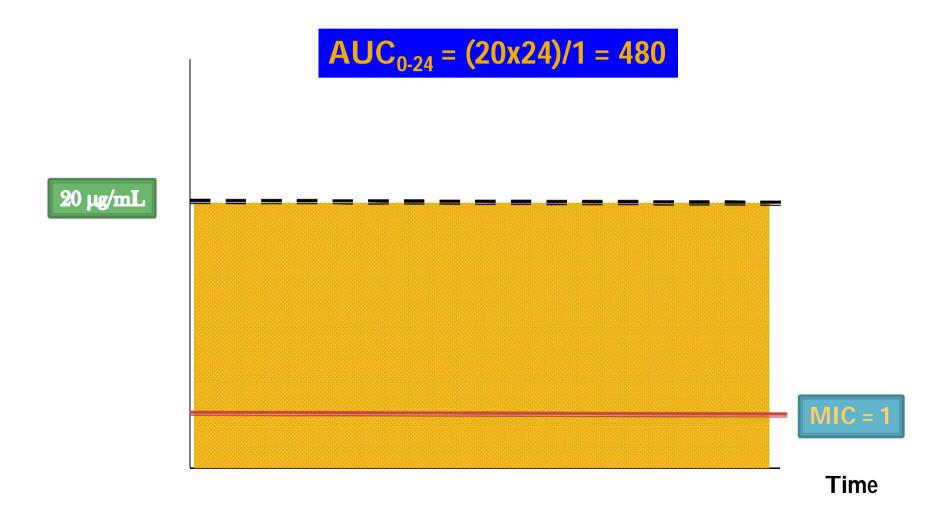
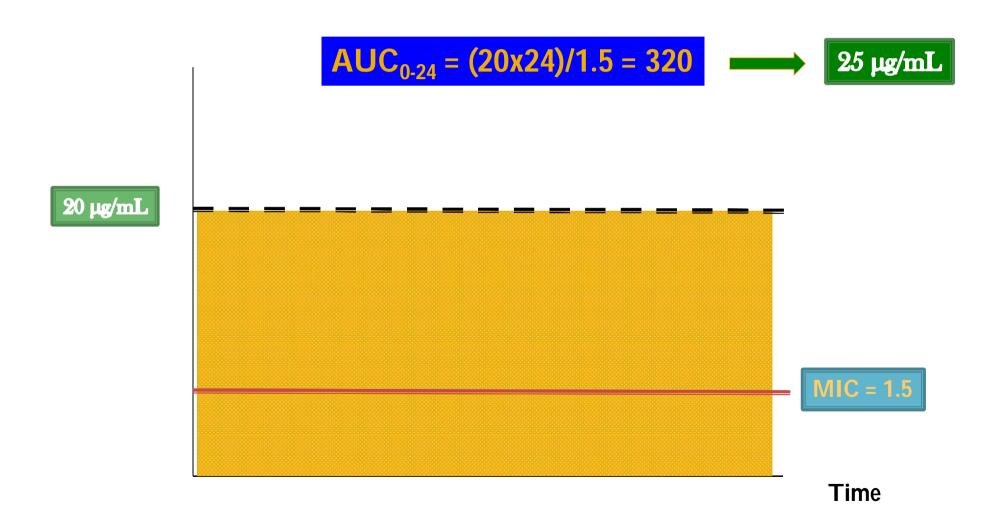
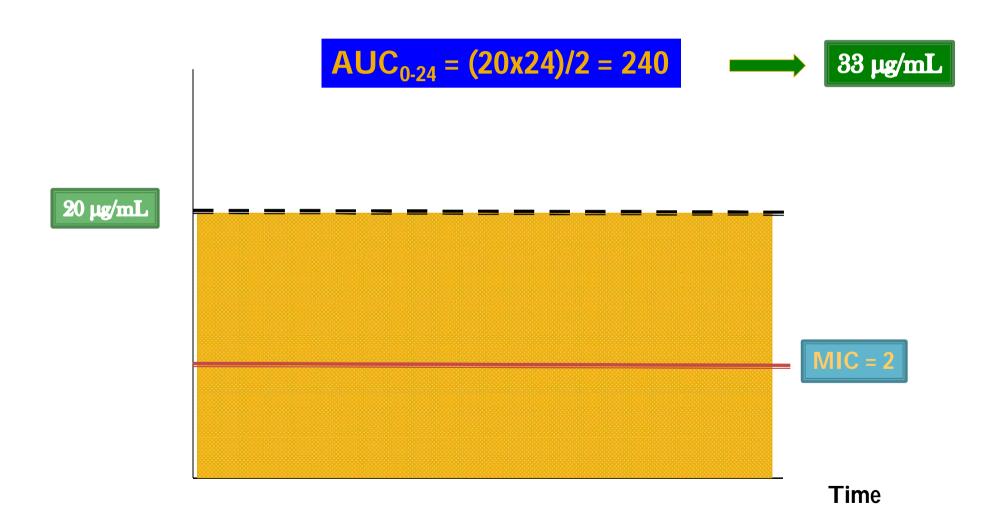



FIG. 1. Mean serum vancomycin concentrations adapted to a 24-h dosing interval. O, CD; ◆, CI. The results for the concentration-time dosage interval of 12 to 24 h was simulated from mean data for 0 to 12 h.





A survey of beta-lactam antibiotics and vancomycin dosing strategies in intensive care units and general wards in Belgian hospitals

F. M. Buyle • J. Decruyenaere • J. De Waele •

P. M. Tulkens • T. Van Audenrode • P. Depuydt •

G. Claeys · H. Robays · D. Vogelaers

	n	Non ICU		ICU						
		Intermittent infusions	Prolonged infusions		Combination	Intermittent infusions	Prolonged infusions		Combination	
		II (%)	EC (%)	CI (%)	II/CI (%)	II (%)	EC (%)	CI (%)	II/CI (%)	
Ceftazidime	32	19 (59)	0 (0)	13 (41)	0 (0)	6 (19)	0 (0)	26 (81)	0 (0)	
Cefepime	20	18 (90)	1 (5)	1 (5)	0 (0)	13 (65)	5 (25)	2 (10)	0 (0)	
Piperacillin-tazobactam	34	30 (88)	4 (12)	0 (0)	0(0)	21 (62)	12 (35)	1 (3)	0 (0)	
Meropenem	34	22 (65)	11 (32)	1 (3)	0 (0)	11 (32)	22 (65)	1 (3)	0 (0)	
Vancomycin	34	19 (56)	0 (0)	12 (35)	3 (9)	7 (20)	0 (0)	24 (71)	3 (9)	

Continuous versus Intermittent Infusion of Vancomycin in Severe Staphylococcal Infections: Prospective Multicenter Randomized Study

MARC WYSOCKI,^{1*} FREDERIQUE DELATOUR,² FRANÇOIS FAURISSON,² ALAIN RAUSS, YVES PEAN,⁴ BENOIT MISSET,⁵ FRANK THOMAS,⁶ JEAN-FRANÇOIS TIMSIT,⁷ THOMAS SIMILOWSKI,⁸ HERVE MENTEC,⁹ LAURENCE MIER,¹⁰ DIDIER DREYFUSS,¹⁰ AND THE STUDY GROUP[†]

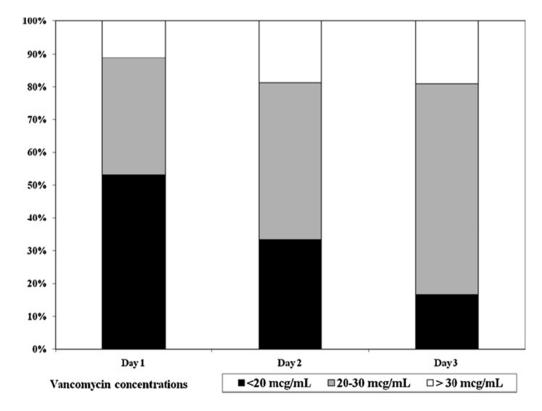
- 119 pts with MRSA infections (35% bacteremia; 45% pneumonia)
- Clinical outcome and safety similar
- Target concentrations reached faster
- Smaller variability of AUC
- Lower Costs

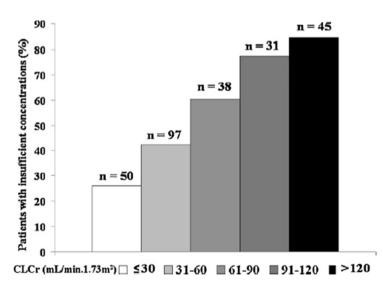
Does contemporary vancomycin dosing achieve therapeutic targets in a heterogeneous clinical cohort of critically ill patients? Data from the multinational DALI Study

Table 2 Pharmacokinetic and pharmacodynamic parameters of vancomycin and clinical outcomes in critically ill patients

Parameter	All patients (n = 42)	Intermittent dosing (n = 18)	Continuous infusion (n = 24)	p^*
Vancomycin dose (mg/kg)	27 [18 – 32]	27 [22 – 30]	27 [17 – 33]	0.611
Elimination rate constant (h ⁻¹)**	0.09[0.03-0.13]	0.09[0.03-0.13]	-	-
Clearance (L/h)	3.6[1.9 - 5.9]	5.1[2.4-7.1]	2.7[1.7-4.1]	0.038
Half-life (h)**	8.2[5.4-24.1]	8.2[5.4 - 24.1]	-	-
C _{min} (mg/L)	17 [8 – 23]	10 [7 – 17]	21 [14 - 26]	0.029
C _{min} ≥15 mg/L, n (percentage)	24 (57.1]	7 (38.9)	17 (70.8)	0.038
AUC ₀₋₂₄ /MIC	655 [368 - 911]	409 [246 - 712]	830 [529 - 952]	0.029
$AUC_{0-24}/MIC > 400$, n (percentage)	30 (71.4)	9 (50.0)	21 (87.5)	0.008
Length of vancomycin therapy on sampling date				
Days, n	4[1-7]	2[1-6]	4 [1 – 7]	0.314
>2 days, n (percentage)	23/41 (56.1)	8/18 (44.4)	15/23 (65.2)	0.183
>3 days, n (percentage)	22/41 (53.7)	8/18 (44.4)	14/23 (60.9)	0.295

- No evidence of better clinical outcome when CI is used
- Reduced incidence of nephrotoxicity
- No studies in septic patients concerning which is the best dosage regimen

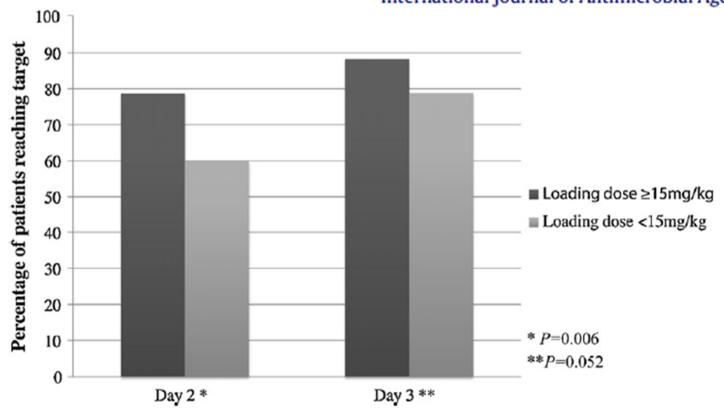




Determinants of early inadequate vancomycin concentrations during continuous infusion in septic patients

Eva Ocampos-Martinez^a, Laura Penaccini^a, Sabino Scolletta^a, Ali Abdelhadii^a, Alessandro Devigili^a, Silvia Cianferoni^a, Daniel de Backer^a, Frédérique Jacobs^b, Frédéric Cotton^c, Jean-Louis Vincent^a, Fabio Silvio Taccone^{a,*}

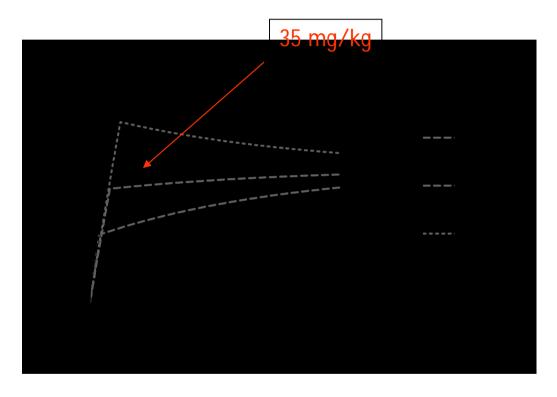
International Journal of Antimicrobial Agents 39 (2012) 332-337



Factors associated with inadequate early vancomycin levels in critically ill patients treated with continuous infusion

J.J. De Waele^{a,*}, I. Danneels^b, P. Depuydt^a, J. Decruyenaere^a, M. Bourgeois^c, E. Hoste^a

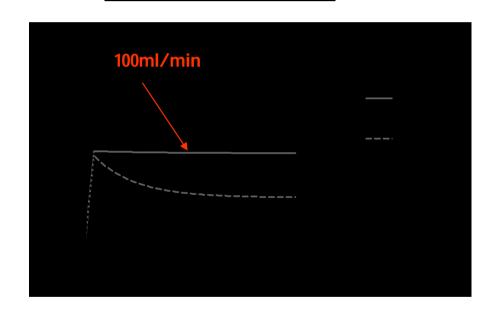
International Journal of Antimicrobial Agents 41 (2013) 434-438

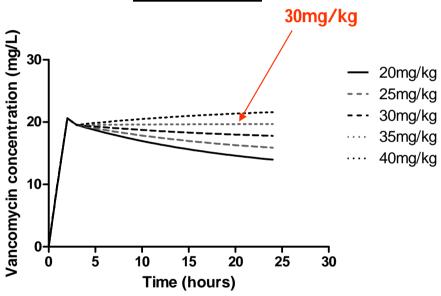


Age
Male gender
sCr
Temperature
LD

Monte Carlo Simulation

Roberts, Taccone et al. (AAC, 2011)


Simulations for identifying the best loading dose for a critically ill patient


Monte Carlo Simulation

Creatinine clearance

Daily dose

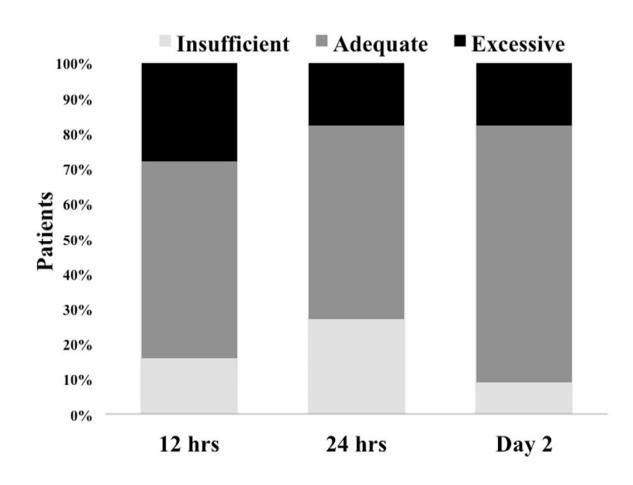
Loading dose: 35mg/kg

CI: 30mg/kg

Loading dose: 35mg/kg

Creatinine clearance: 100ml/min x 1.73m²

Loading dose: 35mg/kg


then daily dose: 30mg/kg if clearance 100ml/min x 1.73m²

Validation

Table 1: Daily dose according to CrCl.								
CrCl Daily dose								
	(mg/kg/day)							
> 150	45							
120-150	40							
80-120	35							
50-80	25							
25-50	14							
< 25 or oliguria	7							

Cristallini, 42nd SCCM Congress 2013

Vancomycin: Side effects

Red-Man Syndrome

Nephrotoxicity

Ototoxicity

Vancomycin: Side effects

Vancomycin nephrotoxicity is not fully understood

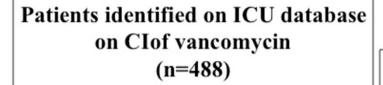
- Early preparations were associated with nephrotoxicity
- Large doses and high trough levels have been correlated with nephrotoxicity
- Combination with aminoglycosides increases the risk of acute renal failure

Table 3 Summary of the most important articles, including adult intensive care unit (ICU) patients, which evaluated the incidence of acute kidney injury (AKI) during vancomycin therapy

Reference	n	Type	%ICU	Age	Regimen	Definition of AKI	AKI incidence (%)	Mortality in AKI patients (%)	CRRT need	Vancomycin regimen	Vancomycin concentrations
Bosso et al. [11]	288	P	36	NA	п	Increase sCr ≥0.5 mg/l/50 %	30	NA	NA	-	C _{min} > 15 μg/ml had increased risk of AKI
Cano et al. [41]	188	R	100	58	П	Increase sCr ≥0.5 mg/l/50 %	15	33 %	NA	-	Initial $C_{\min} > 15 \mu g/ml$ had increased risk of AKI
Colares et al. [42]	19	R	57	51	П	50 % increase in baseline sCr	100	53	37	-	Highest $C_{\min} > 40 \mu \text{g/ml}$ in all patients with AKI
Hidayat et al. [29]	95	P	42	72	П	Increase sCr ≥0.5 mg/l	12	NA	NA	-	AKI occurred only if $C_{\min} > 15 \mu g/$ ml
Hutschala et al. [43]	149	R	100	59	II CI	Increase sCr ≥0.3 mg/l	37 27	NA	30 % 23 %	Similar daily doses between groups	Mean levels higher in CI (25 vs. 17 μg/ml)
Jeffres et al. [10]	94	R	NAª	59	П	Increase sCr ≥0.5 mg/l/50 %	43	NA	0 %	-	C _{min} > 15 μg/ml had increased risk of AKI
Lodise et al. [28]	166	R	36	56	П	Increase sCr ≥0.5 mg/l/50 %	13	NA	NA	-	Initial C _{min} was associated with AKI development
Lodise et al. [8]	246	R	41	58	П	Increase sCr ≥0.5 mg/l/50 %	12	NA	0 %	>4 g/day was associated with increased AKI	-
Minejima et al. [30]	227	P	33	70	П	Increase sCr ≥0.3 mg/l	19	19 %	0 %	Lower initial dose in AKI group	Vancomycin levels were not associated with AKI
Pritchard et al. [9]	129	R	NAª	61	П	Increase sCr ≥0.5 mg/l/50 %	16	NA	NA	Higher initial dose in patients with AKI	Higher mean C_{\min} in patients with AKI
Shen et al. [35]	33	R	30	71	П	1.5-fold increase in sCr	45	40 %	6 %	-	-
Spapen et al. [18]	129	R	100	67	CI	Increase sCr ≥0.3 mg/l	29	53 %	0 %	-	C _{max} was associated with AKI

Toxicity of CI Vanco

Early vs. Late


Exposure vs. One Measurement

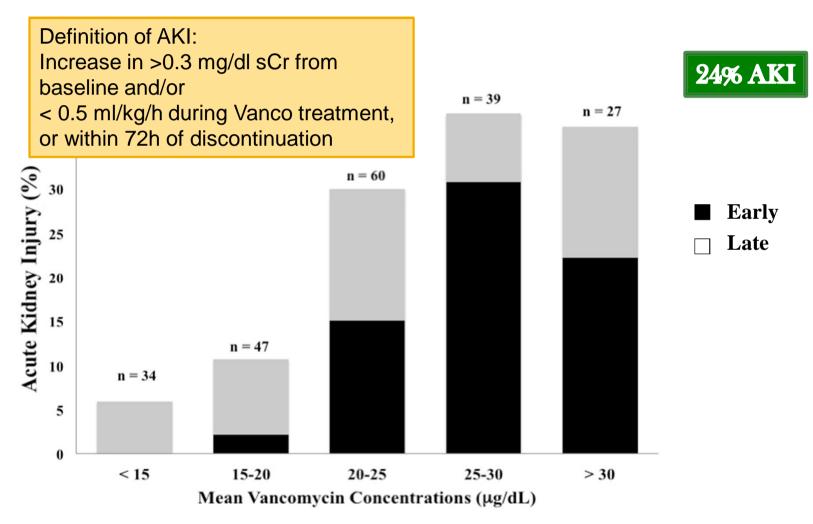
Long-Term Effects (Creat)

Use of CRRT

Patients eligible for the study (n=261)

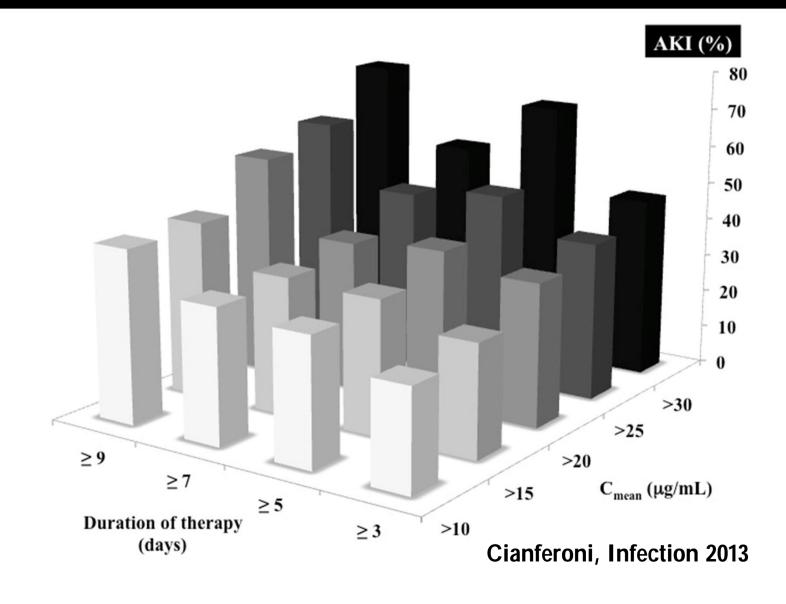
Patients included in the study (n=207)

Excluded patients (n= 227):

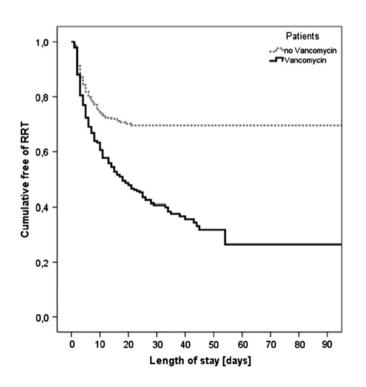

Less than 48h of therapy (n=115)
Renal replacement therapy (n=53)
No weight available (n=27)
No drug monitoring (n=18)
Never received drug (n=9)
Age less than 18 years (n=5)

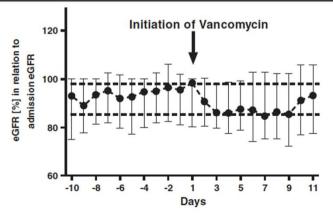
Excluded patients (n= 54):

sCr not available during the entire
therapy (n=35)
Daily urine output not available
during therapy (n=14)
Other nephrotoxics not available
during therapy (n=5)



	Variable	Multivariab	le analysis
		p-Value	OR (95 % CI)
	AKI		
	C_{mean} (µg/ml)	< 0.001	1.1 (1.04-1.15)
	Duration of therapy (days)	0.049	1.12 (1.01-1.25)
	Early AKI		
	Bacteremia	0.008	1.76 (1.32-1.93)
	$C_{\text{mean}} (\mu g/\text{ml})$	< 0.001	1.12 (1.01-1.20)
,	Dose _{mean} (mg/day)	< 0.001	0.98 (0.97-0.99)
,	Late AKI		
	Diabetes	0.02	1.68 (1.16-1.88)
	Duration of therapy (days)	0.02	1.17 (1.02-1.33)




Renal outcome after vancomycin treatment and renal replacement therapy in patients with severe sepsis and septic shock: A retrospective study

Gordon P. Otto, MD, MSc ^{a,b,*}, Maik Sossdorf, PhD ^{a,b}, Hannes Breuel, MD ^b, Peter Schlattmann, MD, MSc ^c, Ole Bayer, MD ^b, Ralf A. Claus, PhD ^{a,b}, Niels C. Riedemann, MD ^{a,b}, Martin Busch, MD ^d

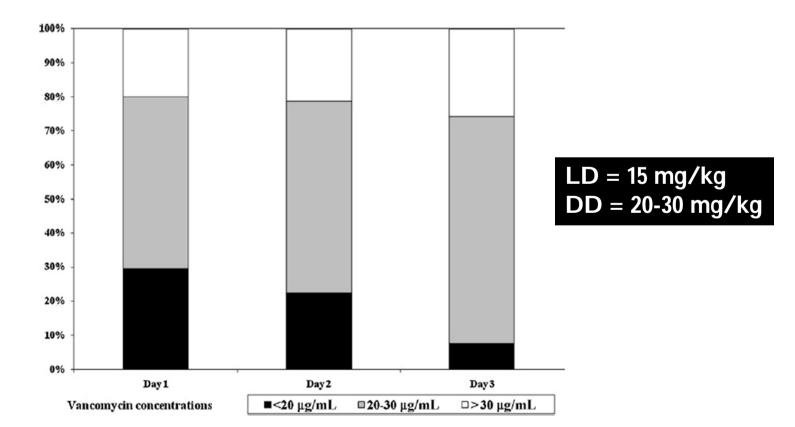
Journal of Critical Care xxx (2014) xxx-xxx

		rement of RRT rge in all patio		discha	ement of RRT rge with vanc fore RRT initia	omycin
	OR	95% CI	P	OR	95% CI	P
Median SAPS II during LOS†	1.368	1.276-1.466	<.001	1.371	1,272-1,478	<.001
eGFR at admission‡	0.978	0.967-0.990	<.001	0.980	0,967-0,993	
Gentamicin treatment	1.266	0.685-2.339	.455	2.010	1.002-4.033	.049
Vancomycin treatment	2.659	1.878-3.766	<.001	1.648	1.067-2.546	

Dosing for « special » conditions

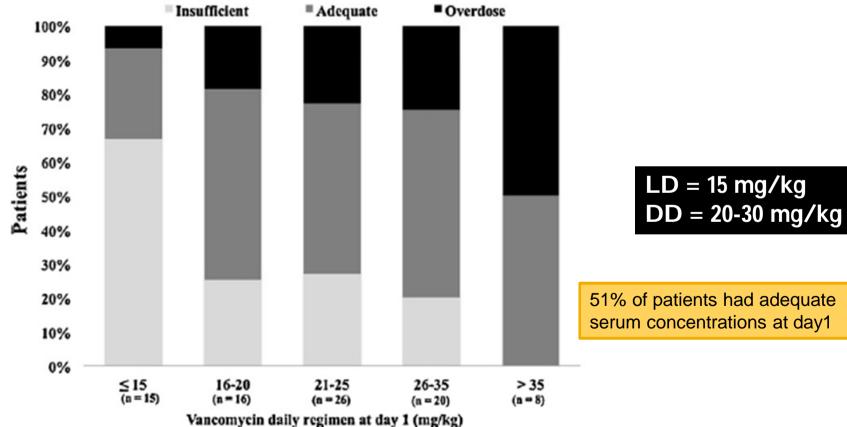
 Continuous Renal Replacement Therapy (CRRT)

Obese patients


Liver cirrhosis / Burns

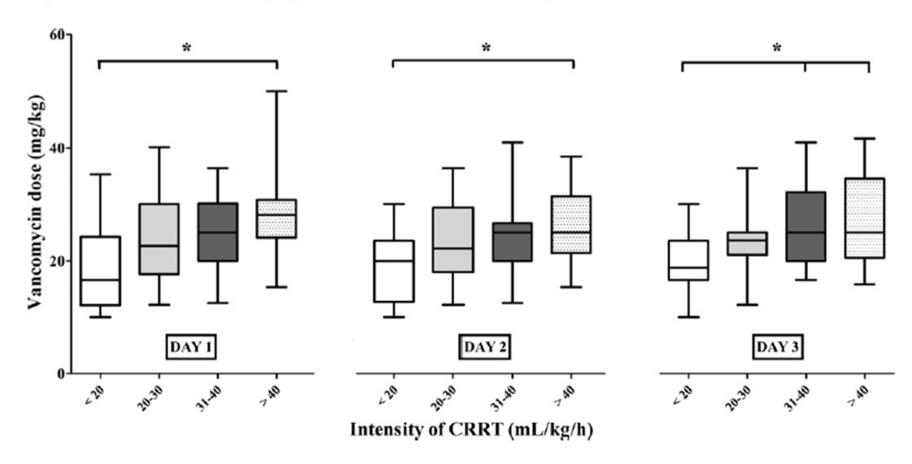
Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy

Cecilia Covajes^a, Sabino Scolletta^a, Laura Penaccini^a, Eva Ocampos-Martinez^a, Ali Abdelhadii^a, Marjorie Beumier^a, Frédérique Jacobs^b, Daniel de Backer^a, Jean-Louis Vincent^a, Fabio Silvio Taccone^{a,*}



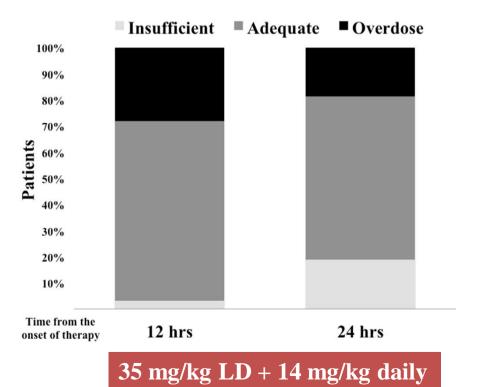
Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy

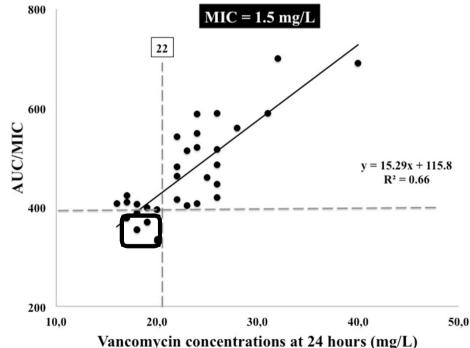
Cecilia Covajes^a, Sabino Scolletta^a, Laura Penaccini^a, Eva Ocampos-Martinez^a, Ali Abdelhadii^a, Marjorie Beumier^a, Frédérique Jacobs^b, Daniel de Backer^a, Jean-Louis Vincent^a, Fabio Silvio Taccone^{a,*}



Continuous infusion of vancomycin in septic patients receiving continuous renal replacement therapy

Cecilia Covajes^a, Sabino Scolletta^a, Laura Penaccini^a, Eva Ocampos-Martinez^a, Ali Abdelhadii^a, Marjorie Beumier^a, Frédérique Jacobs^b, Daniel de Backer^a, Jean-Louis Vincent^a, Fabio Silvio Taccone^{a,*}





A new regimen for continuous infusion of vancomycin during continuous renal replacement therapy

Marjorie Beumier¹, Jason A. Roberts², Hakim Kabtouri³, Maya Hites³, Frederic Cotton⁴, Fleur Wolff⁴, Jeffrey Lipman², Frédérique Jacobs³, Jean-Louis Vincent¹ and Fabio Silvio Taccone^{1*}

J Antimicrob Chemother 2013; **68**: 2859 – 2865

Conclusions

Vancomycin

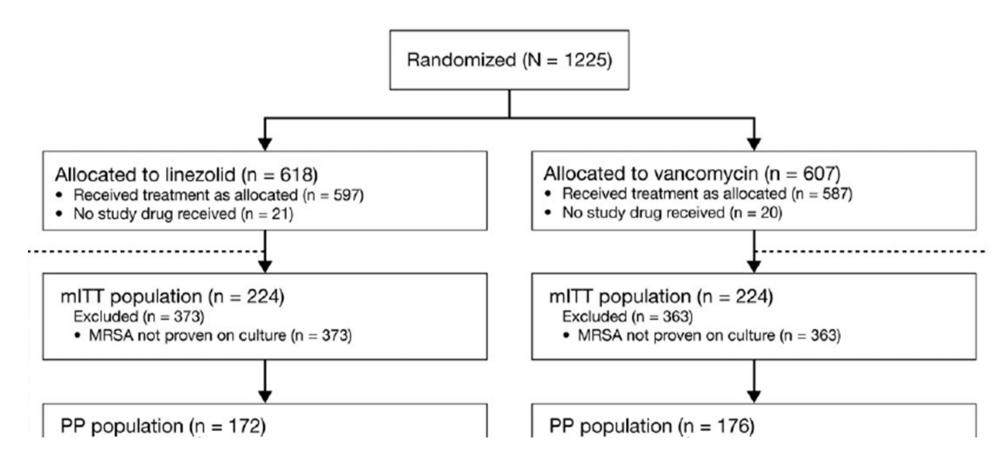
- Remains one of the first options to treat GP infections
- Increasing MICs
- Insufficient drug concentrations with standard regimens
- CI > II ... but not better clinical response

Conclusions

Nephrotoxicity

- **20-25%**
- Associated with concentrations in the early phase: chicken/egg?
- Association with other nephrotoxics
- Drug regimen adjustment in other conditions
 - CRRT
 - Obese patients
 - ECMO

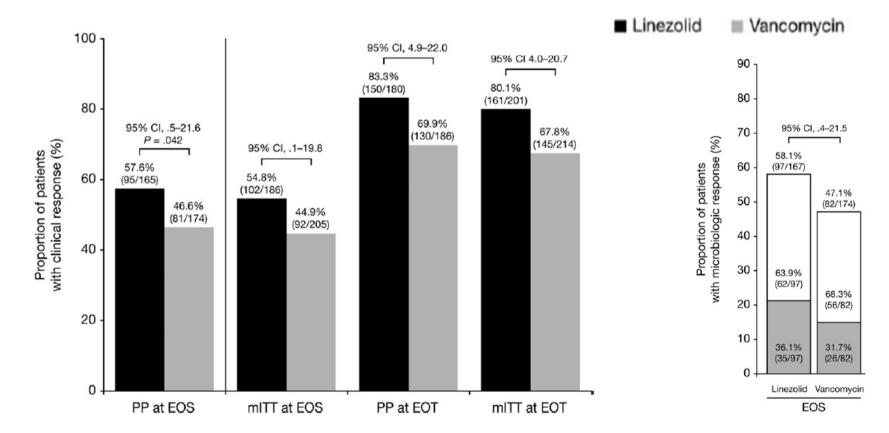
- Linezolid
- Telavancine
- Daptomycine
- Tygecycline
- Ceftaroline
- Ceftobiprole



Linezolid in Methicillin-Resistant *Staphylococcus*aureus Nosocomial Pneumonia: A Randomized,

Controlled Study

Clinical Infectious Diseases 2012;54(5):621-9



Linezolid in Methicillin-Resistant *Staphylococcus*aureus Nosocomial Pneumonia: A Randomized,

Controlled Study

Clinical Infectious Diseases 2012;54(5):621-9

Linezolid in Methicillin-Resistant *Staphylococcus*aureus Nosocomial Pneumonia: A Randomized, Controlled Study Clinical Infectious Diseases 2012;54(5):621-9

Richard G. Wunderink,¹ Michael S. Niederman,² Marin H. Kollef,³ Andrew F. Shorr,⁴ Mark J. Kunkel,⁵ Alice Baruch,^{5,a} William T. McGee,⁶ Arlene Reisman,⁵ and Jean Chastre⁷

Vancomycin trough levels (day 3)			
0-7.9 μg/mL		17/35 (48.6)	
8-12.3 μg/mL		17/37 (46.0)	
12.4-17.4 μg/mL	•••	15/33 (45.5)	
>17.4 μg/mL		15/33 (45.5)	
Vancomycin MIC			
<1 μg/mL	10/16 (62.5)	7/14 (50.0)	-22.8 to 47.8
1 μg/mL	77/122 (61.5)	64/134 (47.8)	1.6 to 25.8
≥2 µg/mL	3/8 (37.5)	7/13 (53.8)	-59.5 to 26.8

Linezolid in Methicillin-Resistant *Staphylococcus*aureus Nosocomial Pneumonia: A Randomized, Controlled Study Clinical Infectious Diseases 2012;54(5):621-9

Richard G. Wunderink,¹ Michael S. Niederman,² Marin H. Kollef,³ Andrew F. Shorr,⁴ Mark J. Kunkel,⁵ Alice Baruch,^{5,a} William T. McGee,⁶ Arlene Reisman,⁵ and Jean Chastre⁷

Adverse Event	No. (%)(n = 597)	No. (%)($n = 587$)
Anemia	30 (5.2)	42 (7.2)
Renal failure/ impairment/azotemia ^a	22 (3.7)	43 (7.3)
Cardiac arrest	11 (1.8)	13 (2.2)
Thrombocytopenia	8 (1.3)	13 (2.2)
Pancreatitis	5 (0.8)	1 (0.2)
Polyneuropathy		1 (0.2)
Pancytopenia/ neutropenia	4 (0.6)	2 (0.4)
Paresthesia		1 (0.2)

Linezelid Arm

Vancomyoin Arm

Linezolid in Methicillin-Resistant *Staphylococcus*aureus Nosocomial Pneumonia: A Randomized, Controlled Study Clinical Infectious Diseases 2012;54(5):621-9

Richard G. Wunderink,¹ Michael S. Niederman,² Marin H. Kollef,³ Andrew F. Shorr,⁴ Mark J. Kunkel,⁵ Alice Baruch,^{5,a} William T. McGee,⁶ Arlene Reisman,⁵ and Jean Chastre⁷

 12.3 (9.45)
 14.7 (10.40)
 16.1 (11.30)

Glomerular filtration rate	■ Linezolid	■ Vancomycin	
<50 mL/min	12/28 (42.9)	15/35 (42.9)	-24.6 to 24.6
≥50 mL/min	82/134 (61.2)	64/133 (48.1)	1.2 to 24.9

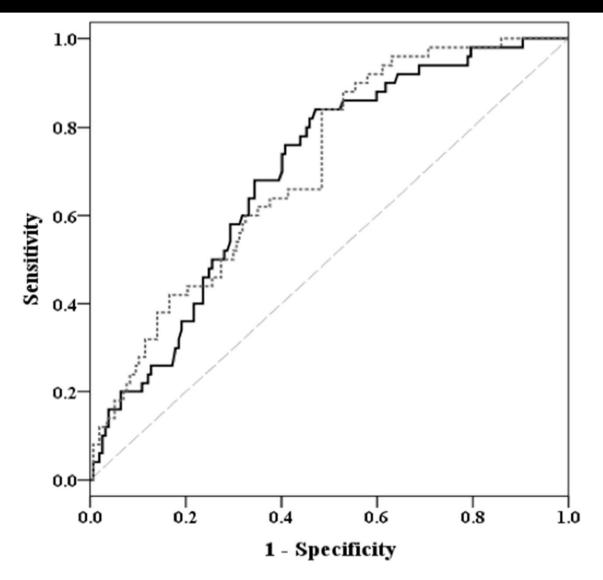
Linezolid versus vancomycin for meticillin-resistant *Staphylococcus aureus* infection: a meta-analysis of randomised controlled trials

Mao Mao Ana, Hui Shena, Jun Dong Zhanga, Guo Tong Xua,**, Yuan Ying Jianga,b,*

International Journal of Antimicrobial Agents 41 (2013) 426-433

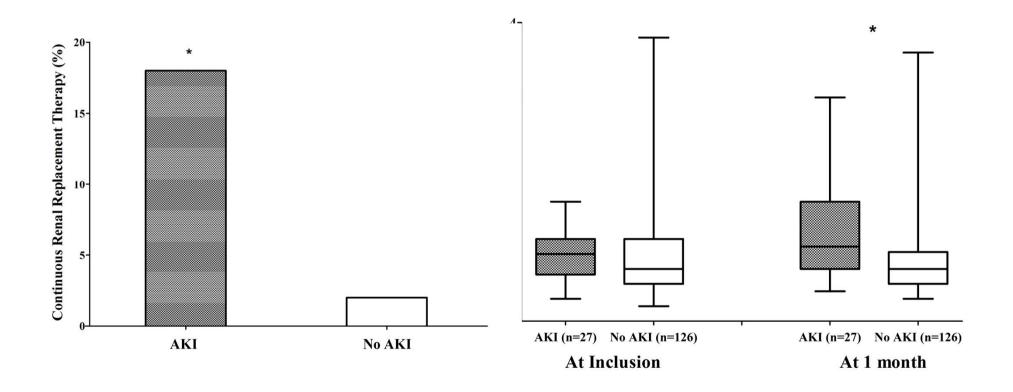
	linezo	olid	Vancor	nycin		Odds Ratio	Odds	Ratio	
Study	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I M-H, Rand	lom, 95% CI	
Stevens [16]	41	56	38	52	11.7%	1.01 [0.43, 2.36]	-	-	
Weigelt[15]	52	53	47	54	2.7%	7.74 [0.92, 65.31]			\rightarrow
Weigelt [13]	436	462	394	436	19.5%	1.79 [1.08, 2.97]			
Sharpe[14]	29	30	13	30	2.8%	37.92 [4.55, 316.02]			→
Kohno[12]	45	93	15	49	14.0%	2.13 [1.02, 4.41]		-	
Wilcox[10]	39	45	31	39	7.7%	1.68 [0.53, 5.34]	_	 • 	
Itani[9]	191	227	167	209	19.9%	1.33 [0.82, 2.18]		 -	
Wunderink [8]	95	165	81	174	21.7%	1.56 [1.01, 2.39]		-	
Total (95% CI)		1131		1043	100.0%	1.77 [1.22, 2.56]		*	
Total events	928		786						
Heterogeneity: Tau	2 = 0.12; Chi2	= 13.2	9, df = 7 (P = 0.07	7); I ² = 47%		0.00	1 10	
Test for overall effe	ect: Z = 3.02 (P = 0.0	03)			Fa	0.02 0.1 vours Vancomycin	1 10 Favours Linez	50 olid

Linezolid versus vancomycin for meticillin-resistant *Staphylococcus aureus* infection: a meta-analysis of randomised controlled trials


Mao Mao Ana, Hui Shena, Jun Dong Zhanga, Guo Tong Xua,**, Yuan Ying Jianga,b,*

International Journal of Antimicrobial Agents 41 (2013) 426-433

Vilcox[10] tani[9]	28 11	269 537	26 7	257 515	15.2% 5.3%	1.03 [0.59, 1.81] 1.52 [0.58, 3.95]		—	_	
Vunderink [8]	94	597	100	587	50.9%	0.91 [0.67, 1.24]		+		
otal (95% CI)		2475		2363	100.0%	1.03 [0.82, 1.28]		\perp		



AUC = $0.70 (C_{mean})$ AUC = $0.71 (C_{mean} + Duration)$

Conclusions

Vancomycin

- Remains one of the first options to treat GP infections
- Increasing MICs
- Insufficient drug concentrations with standard regimens
- CI > II ... but not better clinical response

Alternative to Vancomycin

- Linezolid
- Better clinical response but ... mortality ??
- Costs