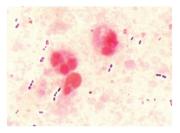
Microbiological Diagnosis of pneumococcal infections

M. leven BVIKM 29.10.2015

- *S. pneumoniae* is a major cause of pneumonia, meningitis, bacteremia, sinusitis, and otitis media, and it occasionally infects tissues at other sites
- IPD: pneumonia, meningitis, bacteremia and infections of other normally sterile sites
- Worldwide, WHO estimates IPD causes +/- 1.6 million deaths/ year including 1 million children <5yrs

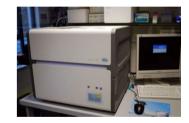
- Accurate and reliable detection of *S.pneumoniae* would thus be beneficial for both pneumococcal & nonpneumococcal disease
 - narrow-spectrum agents for S. pneumoniae
 - other antibacterials and antiviral agents
- Despite its importance, IPD (particularly pneumococcal pneumonia) can be surprisingly difficult to confirm microbiologically

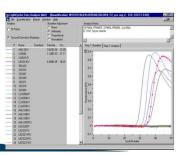
VP Diagnostic testing for *S.pneumoniae*

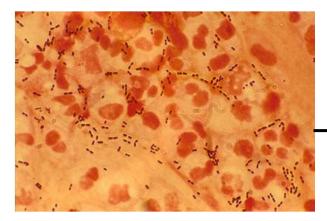

2 fundamental questions to be asked:

- does the test identify *S. pneumoniae* specifically and
- does this detection adequately implicate *S. pneumoniae* as the causative pathogen of disease?

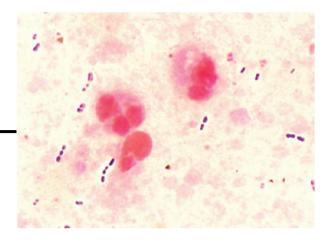
➡ Distinction between colonisation and infection?


VP Laboratory Diagnosis of Pneumococcal Disease





- Microscopy and culture
- Antigen detection assays
 - Urinary antigen test
 - Ag test used on other body fluids
- Nucleic acid amplification tests
 - On normally sterile samples:
 - blood,
 - CSF
 - Pleural fuid
 - On respiratory samples



Streptococcus pneumoniae

- Gram positive cocci in pairs, diplococci
- Causing α-hemolysis of blood agar
- catalase negativity
- optochin susceptibility:
 - But optochin-R pneumococci up to 10%
- bile solubility
 - Discriminatory for optochin-R isolates
- No MALDI-TOF Identification

Eur Respir J 2005; 26: 1138–1180 DOI: 10.1183/09031936.05.00055705 Copyright@ERS Journals Ltd 2005

ERS TASK FORCE IN COLLABORATION WITH ESCMID

Guidelines for the management of adult lower respiratory tract infections

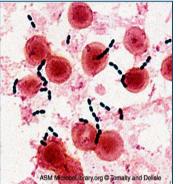
M. Woodhead*, F. Blasi[#], S. Ewig[¶], G. Huchon⁺, M. Leven[§], A. Ortqvist^{*} T. Schaberg**, A. Torres^{##}, G. van der Heijden^{¶¶} and T.J.M. Verheij^{¶¶}

CONTENTS

nme	nd	atic	ns	d	ev	/el	op	be	d																	
	nme 	nmenda	nmendatio		nmendations d	nmendations dev	nmendations devel	nmendations develop	nmendations develope	nmendations developed																

Guidelines for the management of adult lower respiratory tract infections. *Clinical Microbiology and Infection* 2011; 17: E1-E59

Woodhead M et al Eur Resp J 2005; 26:1138-1180


Woodhead M et al. Clin. Micribiol.Infect. 2011;17, E1-E59

VP Rapid Sputum Examination by Gram staining has Diagnostic Value

• Sens : 57% increasing to 63% if \leq 24 hrs antibiotics

Roson B 2000; Butler JC 2003; Musher DM 2004

 216 pts: 62% sputa with predominant morphotype in 65% Gram + diplococci; sens 68.2%, sp 93.8%

Miyashita N. et al Med Sci Monit 2008; 14:171

- Old, simple, cheap rapid diagnostic test for etiology of CAP: can be useful in guiding AB treatment in +/- 25%
- Sputum for routine gram stain and culture, if sputum is purulent and to be correlated with morphotype in gram stain
 (A3)

ERS Guidelines, 2005, Updates, 2011

Vertex Culture based detection of *S.pneumoniae*

Advantages:

- low cost and high specificity: 85-95% but in adults
- both antibiotic susceptibility and serotype results possible

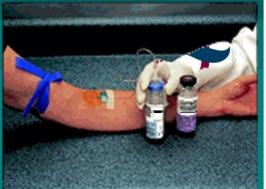
Difficulties :

- tendency of *S. pneumoniae* to autolyse
- antibiotic treatment prior to sampling
- low prevalence of detectable bacteremia
- colonisation vs infection in children?
- difficulty of obtaining good specimen
- description of *S. pseudopneumoniae*

False pos

False neg

VP Incidence of pneumococcal bacteremia



- rates of pos blood cultures in adults hospitalized with pneumonia are typically only 3%–8%
- in children even lower rates

Study	Incidence
Waskerwitz (1981)	5.8%
Dershewitz (1983)	4.3%
Carroll (1983)	10.4%
Bennish (1984)	4.3%
Jaffe (1987)	2.8%
Lee (1998)	1.6%

Recommendations on blood cultures?

Very Value of Blood Culture in the Diagnosis of adult CAP

- Specificity: very high (100 %)
- Sensitivity low:positive in 4-29% of untreated cases; 34 % when initiated within 4 days after first symptoms

Bishara J et al. Eur J Clin Microbiol Infect Dis. 2000;19:926 Butler JC et al J Infect Dis. 2003;187:1422

- ⇒ Most sensitive for *S.pneumoniae*
- ⇒ But... easy to sample and often the only source of information!
- Blood cultures before initiation of AB therapy (A3)

ERS Guidelines, 2005, Updates, 2011

IDSA GUIDELINES

The Management of Community-Acquired Pneumonia in Infants and Children Older Than 3 Months of Age: Clinical Practice Guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America

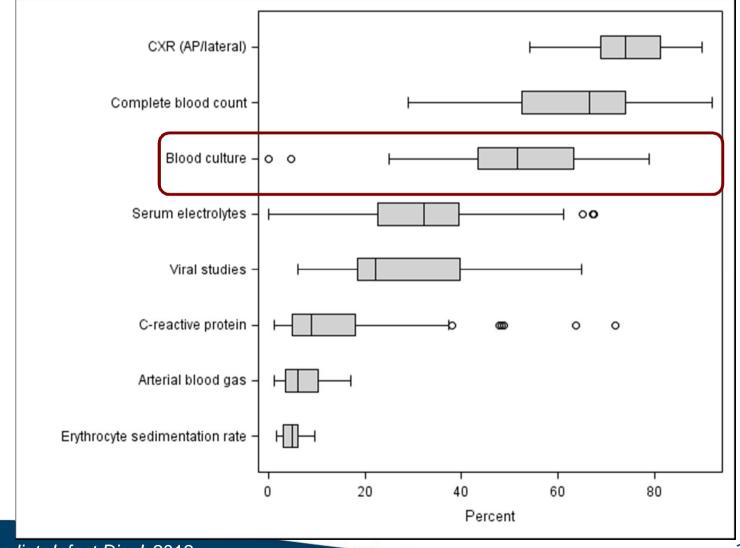
John S. Bradley,^{1,a} Carrie L. Byington,^{2,a} Samir S. Shah,^{3,a} Brian Alverson,⁴ Edward R. Carter,⁵ Christopher Harrison,⁶ Sheldon L. Kaplan,⁷ Sharon E. Mace,⁸ George H. McCracken Jr,⁹ Matthew R. Moore,¹⁰ Shawn D. St Peter,¹¹ Jana A. Stockwell,¹² and Jack T. Swanson¹³

Bradley J et al *Clin Infect Dis.* 2011;53:e25–e76 Bradley J et al *Clin Infect Dis.* 2011;53:617–630

Blood cultures: recommendations

	Outpat	Inpatient	
Recommendation	NOT Recommended	Recommended	Recommended
Comments	Non-toxic, fully immunized children treated as outpatients	Failure to demonstrate clinical improvement, progressive symptoms, or deterioration after initiation of antibiotic therapy	Requiring hospitalization for moderate-severe bacterial CAP
Strength	Strong	Strong	Strong
Evidence Quality	Moderate	Moderate	Low

Bradley J et al *Clin Infect Dis.* 2011;53:e25–e76 Bradley J et al *Clin Infect Dis.* 2011;53:617–630



Outpatient

- Infrequently identifies pathogens (<2%)
- False-positives more common than true positives at some hospitals
- Rarely informs outpatient management
- Inpatient
 - Positive in ~3% of uncomplicated pneumonia
 - Positive in ~15% with empyema
 - Allows for culture-directed therapy when positive
 - Provides local epidemiologic data

Bonadio WA. *Pediatr Emerg Care*. 1988; Hickey RW. *Ann Emerg Med*. 1996; Shah SS. Arch *Pediatr Adolesc Med*. 2003; Shah SS. *Pediatr Infect Dis J*. 2011

VP Diagnostic Testing for pediatric CAP in 47 hospitals



Brogan TV. Pediatr Infect Dis J. 2012

A new Immunochromatographic membrane test (ICT) has been developed to detect capsular polysaccharide antigens PnC of *S.pneumoniae* in urine samples.

PnC is a common antigen for all pneumococcal serotypes. ICT has proven very useful in the rapid diagnosis of pneumococcal pneumonia in adults.

Early Diagnosis of Pneumococcal Pneumonia based on Urinary Ag

- Diagnostic yield increased up to 38.9% using ICT combined with conventional methods
- The test tends to be **more sensitive** for patients **with** versus those without **bacteremia**

Sequential approach:

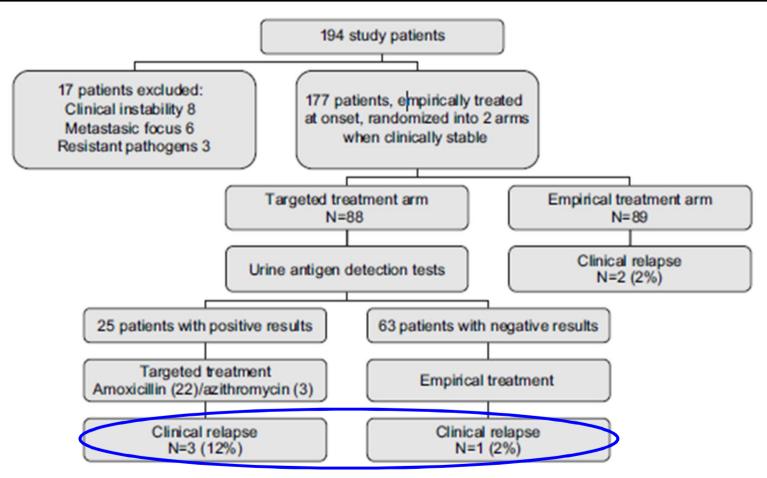
Urinary antigen testing for **high-risk patients** for whom demonstrative results of a **sputum Gram stain are unavailable.**

Roson B et al. Clin Infect Dis 2004; 38: 222

Diagnositc efforts should be directed towards **the most severely affected patients** and the ones with greatest risk of death.

Ortega et al. Scand J Infect Dis 2005

Limited impact of *S. pneumoniae* U Agtest on adjustment of AB treatment


- Case Control study in 2 groups of pneumonia patients randomised:
 - PnAg performed: N= 139: 22/139 pos
 - PnAg not performed: N= 147

	Pn Ag group N= 139	Control N= 147	P-value
	Absolute nr (%)	Absolute nr (%)	
No change	51 (37%)	67 (46%)	0.15
Narrowing	66 (47%)	73 (50%)	0.73
Streamlining to peni or amoxi	17 (13%)	13 (9%)	0.44
Stop macrolide	56 (40%)	54 (36%)	0.54

→ Implementation of Ag test: no result on change of AB prescription

Piso RJ et al Swiss Med Wkly 2012; 142: w13679

Empirical vs targeted AB in CAP based on results of Pn UAg

Narrowing treatment according to the UAg may be associated with a higher risk of clinical relapse; no outcome or economic benefits

S. pneumoniae Urinary Ag test, According to Pneumococcal Colonization Status of Pediatric Patients, with or without Pneumonia

	No. of pos no. of tota among c		
Patients	With pneumococci in nasopharynx	Without pneumococci in nasopharynx	Р
Children with pneumonia	25/41 (61)	6/47 (13)	.001
Control children with dermatitis of diarrhea	43/80 (54)	25/118 (21)	.001

⇒ Antigen test does not distinguish children with pneumonia from controls without pneumonitis

Dowell SF et al. Clin Infect Dis 2001; 32: 824 Navarro D et al, J Clin Microbiol 2004; 42: 4853

Comparison of the manufacturer's protocol and a protocol modified to increase specificity

	results/n	positive o. of total %) among	
Binax NOW method	Children with pneumonia	Controls	P
Manufacturer's protocol	31/88 (35)	68/198 (34)	NS
Modified protocol ^a	12/88 (14)	19/198 (10)	NS

modified protocol : a pos reaction within 5 min, rather than within the full 15 min.

Specificity somewhat increased by reading within 5 min, but test does not differentiate pneumonia patients from controls

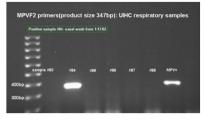
Dowell SF et al. Clin Infect Dis 2001; 32: 824

W Binax NOW *S. pneumoniae* Ag on other body fluids

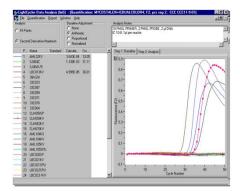
- on CSF samples in pneumococcal meningitis:
 - Sens: 95%–100% and a spec of 100% : 30% more cases vs culture

Saha SK et al Pediatr Infect Dis J 2005; 24:1093–8 Samra Z et al Diagn Microbiol Infect Dis 2003; 45:237–40

- pleural fluid specimens from children and adults with
 - Sensitivity: 71% vs +/- 32% by culture
- BAL samples:


Ploton C et al Pathol Biol 2006; 54:498–501 Porcel JM et al Chest 2007; 131:1442–7

sensitivity of 95% and a specificity of 87%


Jacobs JA et al J Clin Microbiol 2005; 43:4037-40

• The NOW test can also provide a rapid provisional identification of *S. pneumoniae in blood cultures* with positive results

Petti CA et al J Clin Microbiol 2005; 43:2510–2

Real-Time in-house NAATs

Ref, year	Assay	targets
Luo Y, 2012	PCR+ agarose GE	<i>S. pneumoniae, H. influenzae</i> type b, <i>M. tuberculosis</i>
Kim W, 2013	Mx PCR+ agarose GE	S. pneumoniae, S. mitis, S. oralis
Weinberg G, 2013	RT-Mx PCR, TaqMan array	HAdV, hMPV, PIV1-4, influenza A, influenza B, influenza C, RSV, rhinovirus, HCoV OC43, 229E, NL63, HKU1, enterovirus, <i>B. pertussis, C.</i> <i>pneumoniae, H. influenza, L. pneumophila, M.</i> <i>pneumoniae, S. pneumoniae, S. pyogenes</i>
Abdeldaim G , 2008	Quantitative RT-PCR	S. pneumoniae

VP PCR Using Blood for Diagnosis of Invasive Pneumococcal Disease

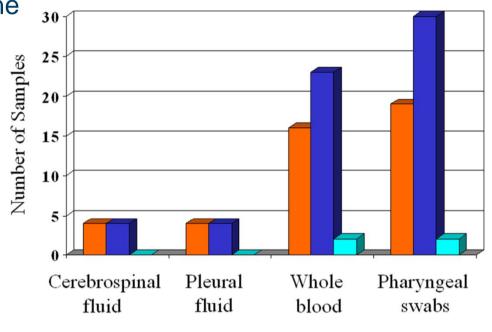
Systematic Review and Meta-Analysis

- 29 studies published between 1993 2009 included
- Pneumococcal bacteremia for case definition and patients with bacteremia caused by other bacteria as controls:
 - Sens: 57.1%, Spec: 98.6%
- When the controls were patients suspected of having IPD without pneumococcal bacteremia:
 - Sens: 66.4%, Spec: 87.8%
- being a child was associated with low specificity

Currently available PCR methods on blood for diagnosis of IPD lack sens and spec needed for clinical practice

Pneumococcal Pneumonia in Children: Diagnosis by R-T PCR on Blood Samples

- 753 children 0–16 yrs with a diagnosis of CAP
- pneumococcal infection in 80/753 (10.6%) of patients by RT-PCR
- culture and RT-PCR simultaneously performed in 292 patients:
 - 45 (15.4%) pos by RT-PCR
 11 (3.8%) pos by culture


 RT-PCR: significantly more sensitive than culture in revealing bacteremic pneumonia

Resti M et al. Clin Infect Dis 2010; 51:1042-1049

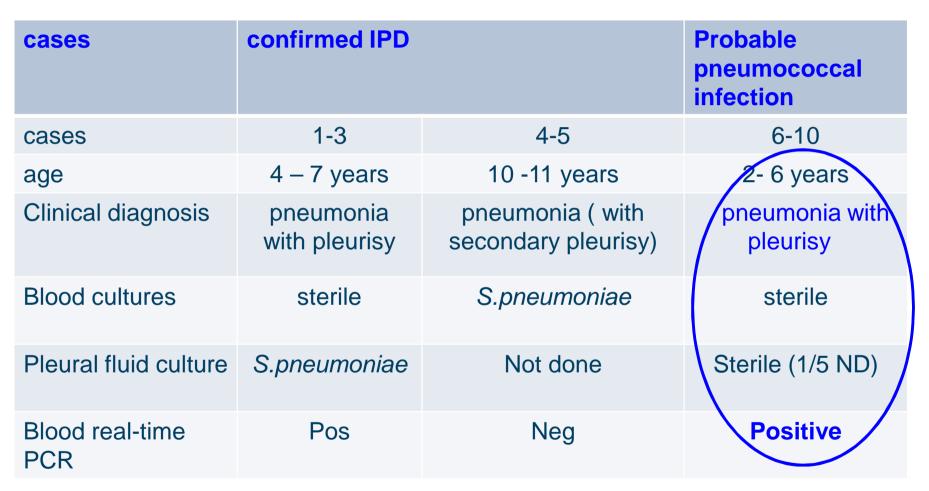
WBRT-PCR and Mx PCR for diagnosis and Serotyping in Children with Culture - PI

All samples PCR positive for *lytA* gene Serotyping

- On normally sterile fluids
 - RT-PCR : 31/33 (93.9%)
 - MS-PCR : 24/33 (72.7%)
 - *P*= 0.047
- On Npswabs
 - RT-PCR : 30/34 (88.2%)
 - MS-PCR : 19/34 (55.9%)
 - *P*= 0.007

67 clinical samples

Realtime-PCR


Multiplex Sequential PCR

Non-typeable with any method

Both MS PCR and RT-PCR useful for pneumococcal serotyping but RT-PCR appears more sensitive

Azzari C et al PLoS ONE 2010; 5:e9282

Added value of *S. pneumoniae* RT-PCR in IPD in blood

Chantreuil J et al J Microbiol Exp 2015, 2: 00040

VP PCR for detection of IPD in children

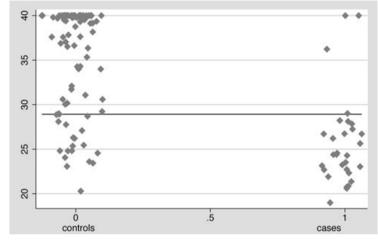
- 76 children with **IPD**: PCR for *Ply* and *LytA* gene
 - Sensitivity PCR: 80%, specificity 98%
 - 5 additional cases identified vs standard techniques

Chantreuil J et al J Microbiol Exp 2015, 2: 00040

pneumococcal meningitis: 122 cases

- 87/122 pos by culture: sensitivity 71%
- Among culture neg:
 - 35 pos by LytA PCR: sensitivity: 100%
- All 122 pos by ICT : sensitivity:100%

Saha SK et al Pediatr Infect Dis J 2005; 24:1093–8

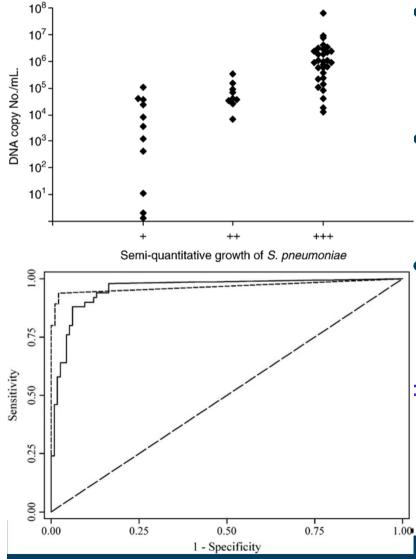

Ver Value of Pneumococcal Q-PCR

- Children with confirmed meningitis (n = 82) or pneumonia (n = 13) prospectively recruited
- blood and CSF taken for pneumococcal DNA loads
- Median blood and CSF bacterial loads (log DNA copies/mL) were significantly higher in nonsurvivors than in survivors:
 - blood (3.80 vs. 2.97, P = 0.003),
 - CSF (8.17 vs. 7.50, P = 0.03)

High Pneumococcal DNA Loads are Associated With Mortality in Children With IPD

Quantitative PCR for Diagnosis of S. pneumoniae Infection

- First prospective study on Q-PCR
- Based on ROC curve analysis
 - Ct with maximal sensitivity: 28.96
 - Corresponding to +/- 3.7x10⁴ DNA c/ml
 - Sens: 90%; spec: 80%


Yang S. et al. J Clin Microbiol 2005, 43: 3221-26

- Significant increase in pathogens: with RQ-PCR (33.5%) vs culture (22.2%) (p < .05)
 - RQ-PCR corresp to >10⁵ CFU/ml

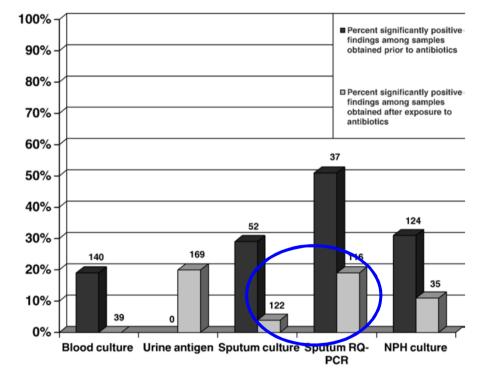
⇒ Quantitative PCR has favorable accuracy for diagnosis of pneumococcal pneumonia

Kais M et al Diagn Microbiol Infect Dis J 2006; 55:169-178

Quantitative DNA-based definition of pneumococcal pneumonia

- At detection limit of PCR
 - Sens: 98%
 - Spec: 84%
 - Cut-off 10⁴ DNA copies/ml
 - Sens: 84%
 - Spec: 94%

Mean Ct value significantly lower for samples with abundant growth


⇒ Quantitative PCR enables differentiation between pathogenicity and commensalism

Abdeldaim G et al Diagn Microbiol Infect Dis J 2008; 60: 143-50

Quantitative PCR for Diagnosis of S. pneumoniae Infection

70/184 (38%) patients with S.pneumoniae

- 15% by blood culture
- 20% by urinary Ag
- 15% culture positive sputa
- 27% by RQ-PCR
 - 82% of these also detected by other methods
 - 50% of these culture -,
 most of these treated with AB

\Rightarrow RQ-PCR particularly valuable in patients treated with AB

Johansson N et al Diagn Microbiol Infect Dis J 2008; 60: 255-61

Microbiological Diagnosis of pneumococcal infections: Conclusions

- Despite developments in laboratory diagnostics, a microbiological diagnosis remains difficult in IPD, particularly for pneumococcal pneumonia
- Culture-based methods remain important
- Antigen based techniques limited to adults but impact of positive tests is limit
- The role of nucleic acid amplification tests has yet to be fully clarified especially of QR-PCR in respiratory samples